

16 x 16 Thermopile Array Module

PRODUCTION SPECIFICATIONS

Model No. : MTP-16PV

Revision History

Date	Rev.	Contents
2019/04/29	V1.0	First release
2020/04/27	V2.0	Add Thermopile array application to measure human body temperature characteristics and update verify the value

16x16 Thermopile Array **MTP-16PV**

The MTP-16PV series is a 16x16 thermopile array module having a digital output through I2C interface for ease of infrared image processing. The application of MTP-16PV series includes occupancy sensing, gesture control, home security and smart appliance.

The MTP-16PV series is ideal for customers who require their products that can meet time to market with a moderate startup cost.

Features and Benefit

- Factory pre-calibrated *
- Low cost and small footprint *
- Integrated with infrared optics *
- Output reading in °C unit directly +

Application Examples

- Alert Body temperature measurement White goods ★
- *
- ★ Energy management
- Intrusion detection *

Functional Block Diagram

Midas Touch

magic embedded

Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Remarks / Conditions
Storage temperature	T _{Storage}	-40		100	°C	
Power supply	V_{Max}			6.5	V	
I/O pin	V _{SCL} V _{SDA}	-0.3		6.5	V	
ESD (Air Mode)	ESD _H			12	kV	IEC6100-4-2
ESD (Contact Mode)	ESD _M			8	V	IEC6100-4-2

Electrical and Mechanical Characteristic

Parameter	Symbol Min Typ Max Unit		Remarks / Conditions					
Operating Conditions								
Operating voltage	VD	4.5	5	5.5	V			
Operating current	ID	-	8.0	-	mA	V_{DD} = 5.0 V, with I2C communication.		
Data Communication						1		
Electrical interface			I2C					
Interface speed			100		KHz			
Slave address			68		hex	7 bits addressing		
Physical Interface	·		<u>.</u>	·				
Physical connection interface		SM04B-GHS-TB equivalent			alent			

Thermopile Array Characteristic

Parameter	Symbol	Min	Тур	Max	Unit	Remarks / Conditions
			-			
Effective number of pixels			256		pixels	16 x 16 = 256 pixels
NETD			0.4		°C	@0.5fps (-Al25 model)
Frame rate			0.5	4	fps	
Field of view	FOV _X FOV _Y		72 72		degrees	

Thermometer Sensing Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Remarks / Conditions			
Ambient Temperature Reading Characteristics									
Temperature range	T _{Amb_rge}	-20		85	°C				
Resolution of reading	$T_{Amb_{res}}$		0.05		°C	T _{amb} =25°C			
Object Temperature Reading Characteristics									
Temperature range	T _{Obj_rge}	-15		110	°C				
Resolution of reading	T _{Obj_res}		0.05		°C	Т _{оbj} =25°С			
Temperature Calibrated Range									
Object temperature accuracy*1	T _{Acc}		±2		°C	T _{amb} =25℃, T _{obj} =80℃ Distance to blackbody: 20cm Emissivity: 95%			

Midas Touch

magic embedded

Thermopile array application to measure human body temperature characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Remarks / Conditions			
Ambient Temperature Reading Characteristics									
Temperature range	T _{Amb_rge}	10		70	°C				
Resolution of reading	T _{Amb_res}		0.05		°C	T _{amb} =25℃			
Object Temperature Calibrated Range									
Object temperature accuracy*1	T _{Acc}		±0.3	±0.4	°C	T _{amb} =28℃, Ta=28.5℃, T _{obj} =35~38℃ Distance to blackbody: 50cm Humidity: 58%			
Frame rate				980	ms				

Note

* 1: It is applicable to the sensor area of the center max pixels.

* 2: Recommended maximum use distance 50cm.

Mechanic Drawing and Pin Assignment

SENSOR PAD - 4PIN 1.2 x 3.5 Pitch 3mm

unit : mm

Ordering Information

Connector Specification

JST connector / 1.25mm pitch (P/N. SM04B-GHS-TB)

Shrouded header

Circuits	Mode	No.	Dimensio	Q'ty /	
Circuits	Top entry type	Side entry type	Α	В	reel
2	BM02B-GHS-TBT	SM02B-GHS-TB	1.25	5.75	2,500
3	BM03B-GHS-TBT	SM03B-GHS-TB	2.50	7.00	2,500
4	BM04B-GHS-TBT	SM04B-GHS-TB	3.75	8.25	2,500
5	BM05B-GHS-TBT	SM05B-GHS-TB	5.00	9.50	2,500
6	BM06B-GHS-TBT	SM06B-GHS-TB	6.25	10.75	2,500
7	BM07B-GHS-TBT	SM07B-GHS-TB	7.50	12.00	2,500
8	BM08B-GHS-TBT	SM08B-GHS-TB	8.75	13.25	2,500
9	BM09B-GHS-TBT	SM09B-GHS-TB	10.00	14.50	2,500
10	BM10B-GHS-TBT	SM10B-GHS-TB	11.25	15.75	2,500
11	BM11B-GHS-TBT	SM11B-GHS-TB	12.50	17.00	2,500
12	BM12B-GHS-TBT	SM12B-GHS-TB	13.75	18.25	2,500
13	BM13B-GHS-TBT	SM13B-GHS-TB	15.00	19.50	2,500
14	BM14B-GHS-TBT	SM14B-GHS-TB	16.25	20.75	2,500
15	BM15B-GHS-TBT	SM15B-GHS-TB	17.50	22.00	2,500

Material and Finish

Contact: Phosphor bronze, copper-undercoated, tin-plated (reflow treatment) Housing: PA9T, UL94V-0, natural (ivory) Solder tab: Brass, copper-undercoated, tin-plated **RoHS compliance** This product displays (LF)(SN) on a label.

Note: Contact JST for gold-plated products.

<For reference> As the color identification, the following alphabet shall be put in the underlined part. For availability, delivery and minimum order quantity, contact JST.

ex. BM04B-GHS-TBT

S...natural (ivory) LE...light blue TR...tomato red K...black E...blue O...orange L...lemon yellow MG...moss green

Data communication protocol for MTP-16PV series

This application note is applicable to MTP-16PV series of thermopile array module. The MTP-16PV series are 16x16 thermal image sensors, one of which has 256 pixels of sensing elements. Currently the member of MTP-16PV includes MTP-16PV-AI15, MTP-16PV-AI25 and MTP-16PV. To simplified further discussion on the following sections, we use MTP-16PV to represent any member of MTP-16PV series in this application note.

MTP-16PV provides I2C data communication interface and plays a slave role on communicating with an outside controller. The Figure 1 shows an example of typical hardware connection to outside controller.

Figure 1. Data communication with I2C interface

- 1. I2C interface parameters
 - I2C address: 68H (slave, 7-bits addressing)
 - Data rate: 100 KHz (max.)

2. Command format (master to slave)

- There are two types of commands, which functions are described as follows:
 - Frame-rate-setting command
 - Readout command

2.1 Frame-rate-setting command

The frame-rate-setting command consists of four data bytes, which are denoted as "ADR", "CMD", CFG1", and "CFG2" in sequence. The definition of each parameter is described on Table 1.

Byte sequence	Syntax	Value	Description
Byte 1	ADR	D0H	Write data to I2C address 68H
Byte 2	CMD	30H	Frame-rate-setting command
Byte 3	CFG1	xxH	Bit[7:4] (Reserved)
			Bit[3:0] frame rate setting
			- 0100: 250ms (4 fps)
			- 0101: 500ms (2 fps)
			- 0110: 1 sec (1 fps) [default]
			- 0111: 2 sec (0.5 fps)

 Table 1. Contents of frame-rate-setting command

			- Others: reserved
Byte 4	CFG2	xxH	Bit[7:0] (Reserved)

2.2 Readout command

The readout command consists of three data bytes, which are denoted as "ADR", "CMD", and "NUL" in sequence. The definition of each parameter is described on Table 2.

Table 2. Contents of readout command

Byte sequence	Syntax	Value	Description
Byte 1	ADR	D0H	Write data to I2C address 68H
Byte 2	CMD	4EH	Data readout request command
Byte 3	NUL	00H	Null byte

3. Response format (slave to master)

After receiving a readout command from the master device, the slave device wills response it a data packet consisting of 525 bytes. The responding data packet includes 9 bytes of header, 4 bytes of ambient temperature reading, and 512 bytes of object temperature reading.

Table 5. Contents of response data packet

Byte 1~9	Byte 10~13	Byte14~525
header	ambient temperature	object temperature

3.1 Contents of packet header

The packet header contains background information of the data packet, such as array size and packet sequence number. See Table 6 for details.

Byte sequence	Syntax	Value	Description
Byte 1	STX	02H	Delimiter: start of header
Byte 2	RESP	4EH	Indicates this data packet is a response to a readout command.
Byte 3	n/a	n/a	(Reserved)
Byte 4	ASDS	xxH	Bit[7:4] TP array size
			- 0010: 16x16
			- Others: (reserved)
			Bit[3:0] Sequence of data packet
			 0000: the 1st data packet
			 0001: the 2nd data packet
			- 1111: the 16 th data packet
			(note: this sequence is used to identify
			whether the reading data packet is an
			updated one.)
Byte 5~8	n/a	n/a	(Reserved)
Byte 9	EXT	03H	Delimiter: stop of header

Table 6. Details of header bytes

3.2 Ambient temperature reading

The ambient temperature reading is embedded in in Byte 12 and Byte 13 in the data packet.

Table 7. Details of ambient temperature by	tes
--	-----

Byte sequence	Syntax	Value	Description
Byte 10	AMB_H	xxH	High byte of ambient temperature reading
Byte 11	AMB_L	xxH	Low byte of ambient temperature reading

Byte 12	n/a	n/a	(Reserved)
2900 12		11/4	(itesei (eu)
Byte 13	n/a	n/a	(Reserved)

According to the contents of Byte 10 (AMB_H) and Byte 11 (AMB_L), we can calculate the exact ambient temperature reading by the follow equation:

 $T_{AMB} = [(AMB_H * 256 + AMB_L) - 27315]/100$

- where
- (1) The T_{AMB} represents sensor's ambient temperature reading, which unit is degree-C;
- (2) The valid decimal digits are at the second decimal place.

3.3 Object temperature reading

The object temperature readings can be read from 256 sensing elements. The pixel coordinate of each sensing elements is defined as Figure 3.

Figure 3. The coordinate of sensing elements

Each pixel's temperature reading is embedded in two data bytes in data packet. The relationship between reading byte sequence and pixel's coordinate is shown as Table 8 and Table 9.

Byte 14	Byte 15
Pixel 1 (Hi-byte)	Pixel 1 (Low-byte)
Byte 524	Byte 525

Table 8. Relationship between reading bytes and object pixels

Table 9. Detai	ls of object temp	perature bytes

Byte sequence	Syntax	Value	Description
Byte 14	OBJ1_H	xxH	High byte of object temperature of pixel 1
Byte 15	OBJ1_L	xxH	Low byte of object temperature of pixel 1
Byte 16	OBJ2_H	xxH	High byte of object temperature of pixel 2
Byte 17	OBJ2_L	xxH	Low byte of object temperature of pixel 2
	OBJn_H	xxH	High byte of object temperature of pixel n
	OBJn_L	xxH	Low byte of object temperature of pixel n
Byte 524	OBJ256_H	xxH	High byte of object temperature of pixel 256
Byte 525	OBJ256_L	xxH	Low byte of object temperature of pixel 256

Midas Touch

The exact object temperature reading for each pixel can be calculated by the following equation:

 $T_{OBJn} = [(OBJn_H*256 + OBJn_L)-27315]/100$ (The 'n' is varied from 1 to 256), where

- (1) The T_{OBJn} represents the n's pixel temperature reading, which unit is degree-C;
- (2) The valid decimal digits are at the second decimal place.

4. Guide to software programming

4.1 Example of frame-rate-setting

T.I	Example of frame-rate-setting				
	Send 'D0' '30' '04' '00'; Frame-rate-setting command				
		; 'D0': write data to I2C address 68H			
		; '30': Frame-rate-setting request			
		; '04': set frame rate to 4fps			
4.2	Example of data readout				
	Send 'D0' '4E' '00'	'D1' '(525 bytes of clock)'			
		; readout command			
		; 'D0': write data to I2C address 68H			
		; '4E': data readout command			
		; '00': null byte			
		; 'D1': read data from I2C address 68H			
		; (525 bytes of clock): to get 525 bytes of data			

Example: TA = $(0x74 * 256 + 0x89 - 27315) / 100 = 25.18^{\circ}C$ Example: Pixel (famore famore famor

Liability Policy

The contents of this document are subject to change without notice. Customers are advised to consult with Midas Touch inc sales representatives before ordering.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Customers considering the use of Midas Touch inc thermopile devices in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded, are requested to consult with Midas Touch inc sales representatives before such use. The company will not be responsible for damage arising from such use without prior approval.