

OPTIREG™ Linear TLE4278G

5 V low drop fixed voltage regulator

Features

- Output voltage tolerance $\leq \pm 2\%$
- Very low current consumption
- Separated reset and watchdog output
- Low-drop voltage
- Watchdog
- Adjustable watchdog activating threshold
- Adjustable reset threshold
- Overtemperature protection
- Reverse polarity protection
- Short-circuit proof
- Suitable for use in automotive electronics
- Wide temperature range
- Green Product (RoHS compliant)

Potential applications

General automotive applications.

Product validation

Qualified for automotive applications. Product validation according to AEC-Q100/101.

Description

The OPTIREG[™] Linear TLE4278G is a monolithic integrated low-drop fixed output voltage regulator supplying loads up to 200 mA. The IC is available in a PG-DSO-14 package. It is designed to supply microprocessor systems under the severe conditions of automotive applications and therefore equipped with additional protection functions against over- load, short circuit and overtemperature. The TLE4278 can also be used in other applications where a stabilized voltage is required.

Туре	Package	Marking
TLE4278G	PG-DSO-14	TLE4278G

Table of contents

	Features	. 1
	Potential applications	. 1
	Product validation	. 1
	Description	. 1
	Table of contents	. 2
1	Block diagram	. 3
2	Pin configuration	. 4
3	General product characteristics	. 5
3.1	Absolute maximum ratings	
3.2	Functional range	. 6
3.3	Thermal resistance	. 6
4	Functional description	. 7
4.1	Electrical characteristics	. 8
4.2	Test circuit	
4.3	Typical performance characteristics	11
5	Application information	13
5.1	Input, output	13
5.2	Reset timing	
5.3	Reset switching threshold	
5.4	Watchdog activating	
5.5	Watchdog timing	
5.6	Hints for unused pins	18
6	Package information	19
7	Revision history	20

Block diagram

1 Block diagram

Figure 1 Block diagram

Pin configuration

2 Pin configuration

Figure 2Pin configuration PG-DSO-14 (top view)

Pin	Symbol	Function
1	WO	Watchdog output; the open collector output is connected to the 5 V output via an integrated resistor of 30 k Ω .
2	WADJ	Watchdog adjust; an external resistor to GND determines the watchdog activating threshold.
3, 4, 5, 10, 11, 12	GND	Ground
6	D	Reset delay; connect a capacitor to ground for delay time adjustment.
7	RADJ	Reset switching threshold adjust; for setting the switching threshold, connect a voltage divider from output to ground. If this input is connected to ground, the reset is triggered at the internal threshold.
8	WI	Watchdog input; rising edge-triggered input for monitoring a microcontroller.
9	Q	5 V output voltage; block to ground with min. 10 μ F capacitor, ESR \leq 5 Ω .
13	I	Input voltage; block to ground directly on the IC with ceramic capacitor.
14	RO	Reset output; the open collector output is connected to the 5 V output via an integrated resistor of 30 k Ω .

Table 1Pin definitions and functions

General product characteristics

3 General product characteristics

3.1 Absolute maximum ratings

Table 2 Absolute maximum ratings

 $T_{\rm i}$ = -40°C to 150°C

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Input voltage I						_
Voltage	V	-42	-	45	V	-
Current	<i>I</i> ₁	-	-	-	mA	Internally limited
Output voltage Q						_
Voltage	V _Q	-1	-	25	V	_
Current	I _Q	-	-	-	mA	Internally limited
Reset output RO						
Voltage	V _{RO}	-0.3	-	25	V	-
Current	I _{RO}	-5	-	5	mA	-
Reset delay D						
Voltage	V _D	-0.3	-	7	V	-
Current	I _D	-2	-	2	mA	-
Reset switching thresho	old adjust RA	DI				_
Voltage	V _{RADJ}	-0.3	-	7	V	-
Current	I _{RADJ}	-	-	-	mA	Internally limited
Watchdog input WI						
Voltage	V _{WI}	-0.3	-	7	V	-
Current	I _{WI}	-	-	-	mA	Internally limited
Watchdog output WO					·	
Voltage	V _{wo}	-0.3	-	25	V	-
Current	I _{wo}	-5	-	5	mA	-
Watchdog adjust WADJ				•		
Voltage	V _{WADJ}	-0.3	-	7	V	-
Current	I _{WADJ}	-	-	-	mA	Internally limited
Ground GND					+	
Current	I _{GND}	-100	-	50	mA	-
Temperatures			1			
Junction temperature	Tj	-50	-	150	°C	-
Storage temperature	T _{stg}	-50	-	150	°C	-

General product characteristics

Note: ESD protection according to MIL Std. 883: ±2 kV. Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

3.2 Functional range

Table 3Functional range

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Input voltage	V	5.5	-	45	V	-
Junction temperature	Tj	-40	-	150	°C	-

Note: In the functional range the functions given in the circuit description are fulfilled.

3.3 Thermal resistance

Table 4Thermal resistance

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Junction ambient	R _{thj-a}	-	-	80	K/W	1)
Junction pin	R _{thj-pin}	-	_	30	K/W	Measured to pin 4

1) Package mounted on PCB 80 × 80 × 1.5 mm³; 35 μ m Cu; 5 μ m Sn; Heat Sink Area 6 cm²; zero airflow.

4 Functional description

The TLE4278 is a monolithic integrated low-drop fixed output voltage regulator supplying loads up to 200 mA.

An input voltage V_1 in the range of 5.5 V $\leq V_1 \leq$ 45 V is regulated to $V_{Q,nom} =$ 5 V with an accuracy of ±2%.

The device operates in the wide temperature range of T_i = -40°C to 150°C.

Two additional features are implemented in the TLE4278 a load dependent watchdog function as well as a sophisticated reset function including power on reset, under voltage reset, adjustable reset delay time and adjustable reset switching threshold.

The watchdog function monitors the microcontroller, including time base failures. In case of a missing rising edge within a certain pulse repetition time the watchdog output is set to "low". Programming of the max. repetition time can be done easily by an external reset delay capacitor. To prevent a reset in case of missing pulses, the watchdog output WO is separate from the reset output RO for the TLE4278. The watchdog output can be used as an interrupt signal for the microcontroller. In any case it is possible to connect pin WO and pin RO externally.

When the controller is set to sleep mode or low power mode its current consumption drops and no watchdog pulses are created. In order to avoid unnecessary wake-up signals due to missing pulses at pin WI the watchdog feature can be disabled as a function of the load current. The switch off threshold is set by an external resistor to pin WADJ. The watchdog function can also be used as a timer, which periodically wakes up the controller. Therefore the pin WADJ must be connected to the output Q.

The power on reset feature is necessary for a defined start of the microprocessor when switching on the application. The reset signal at pin RO goes "high" after a certain delay timed t_{rd} when the output voltage of the regulator has surpassed the reset threshold. The delay time is set by the external delay capacitor. An under voltage reset circuit supervises the output voltage. In case V_Q falls below the reset threshold the reset output is set to "low" after a short reset reaction time t_{rr} . The reset "low" signal is generated down to an output voltage V_Q of 1 V. In addition the reset switching threshold can be adjusted by an external voltage divider. This feature is useful with microprocessors which ensure a safe operation down to voltages below the internally set reset threshold of 4.65 V typical.

4.1 Electrical characteristics

Table 5 Electrical characteristics

 $V_{\rm I}$ = 13.5 V; -40°C $\leq T_{\rm j} \leq$ 125°C (unless otherwise specified)

Parameter	Symbol	Symbol Values			Unit	Note or Test Condition	
		Min.	Тур.	Max.			
Output voltage	V _Q	4.90	5.00	5.10	V	0 mA $\le I_Q \le 150$ mA; 6 V $\le V_1 \le 28$ V	
Output voltage	V _Q	4.8	5.0	5.2	V	$1 \text{ mA} \le I_Q \le 50 \text{ mA};$ $28 \text{ V} \le V_1 \le 45 \text{ V}$	
Output current limiting	I _Q	200	400	-	mA	V _Q = 4.8 V	
Current consumption $I_q = I_1 - I_Q$	I _{q,o}	-	180	200	μΑ	$T_{\rm j}$ = 25°C; $I_{\rm Q}$ = 0 mA	
Current consumption $I_q = I_1 - I_Q$	I _{q,o}	-	210	230	μΑ	$I_{\rm Q} = 0 \text{ mA};$ $T_{\rm j} = 85^{\circ}\text{C}$	
Current consumption $I_q = I_1 - I_Q$	I _{q,150}	-	5	12	mA	$I_{\rm Q} = 150 {\rm mA}$	
Drop voltage $V_{\rm DR} = V_{\rm I} - V_{\rm Q}$	V _{dr}	-	0.25	0.5	V	$I_{\rm Q} = 150 \ {\rm mA}^{1)}$	
Load regulation	$\Delta V_{Q,lo}$	-30	-5	-	mV	I _Q = 5 to 150 mA; V ₁ = 6 V	
Line regulation	$\Delta V_{\rm Q,li}$	-	5	20	mV	$V_1 = 6 \text{ to } 28 \text{ V};$ $I_Q = 5 \text{ mA}$	
Reset generator				•			
Reset threshold	V _{Q,rt}	4.5	4.65	4.8	V	RADJ connected to GND	
Reset headroom	$\Delta V_{Q,rt} = (V_{Q,nom} - V_{Q,rt})$	180	350	-	mV	I _Q = 10 mA	
Reset adjust threshold	$V_{\rm RADJ,th}$	1.28	1.35	1.45	V	$V_{\rm Q} \ge 3.5 \rm V$	
Reset low voltage	V _{RO,I}	_	0.20	0.40	V	$R_{\text{ext}} = 10 \text{ k}\Omega \text{ to } V_{\text{Q}};$ $V_{\text{Q}} \ge 1 \text{ V}$	
Reset high voltage	V _{RO,h}	4.5	-	-	V	-	
Reset pull-up	R _{RO}	20	30	45	kΩ	Internal connected to $V_{\rm Q}$	
Charging current	I _{D,c}	2	5	8	μA	V _D = 1.0 V	
Upper timing threshold	V _{DU}	1.5	1.9	2.3	V	-	
Lower reset timing threshold	V _{DRL}	0.2	0.3	0.4	V	-	
Delay time	t _{rd}	12	20	28	ms	C _D = 47 nF	
Reset reaction time	t _{rr}	0.4	1.0	2.0	μs	$C_{\rm D} = 47 \rm nF$	

Table 5Electrical characteristics (cont'd)

Parameter	Symbol		Values			Note or Test Condition
		Min.	Тур.	Max.		
Watchdog		I	I	I		1
Activating threshold	V _{WADJ,th}	1.28	1.35	1.45	V	Voltage at WADJ
Current ratio	I _Q /I _{WADJ}	650	720	800	_	<i>I</i> _Q ≤ 10 mA
Slew rate	dV _{wi} /dt	5	-	-	V/µs	From 20% up to 80% V _Q
Watchdog low voltage	V _{WOL}	-	0.2	0.4	V	$R_{\rm ext}$ > 10 k Ω to $V_{\rm Q}$
Watchdog high voltage	V _{WOH}	4.5	-	-	V	-
Watchdog pull-up	R _{wo}	20	30	45	kΩ	Internal connected to V _C
Charge current	I _{D,wc}	2	5	8	μA	V _D = 1.0 V
Discharge current	I _{D,wd}	0.6	1.3	2.0	μA	V _D = 1.0 V
Upper timing threshold	V _{DU}	1.5	1.9	2.3	V	_
Lower watchdog timing threshold	V _{DWL}	0.5	0.7	0.9	V	-
Watchdog output pulse period	T _{WD,p}	42	60	80	ms	C _d = 47 nF
Watchdog output low time	t _{wD,l}	7	13	19	ms	$V_{\rm Q} > V_{\rm RT}$
Watchdog trigger time	T _{WI,tr}	35	47	61	ms	$C_{\rm d} = 47 \rm nF$

1) Measured when the output voltage $V_{\rm Q}$ has dropped 100 mV from the nominal value.

4.2 Test circuit

4.3 Typical performance characteristics

Drop voltage V_{dr} versus output current I_Q

Current consumption *I*_q versus input voltage *V*₁

Current consumption *I*_q versus output current *I*₀

Output voltage V_Q versus input voltage V_I

Charge current $I_{D,wc}$ and discharge current $I_{D,wd}$ versus temperature T_j

Output voltage V_Q versus temperature T_i

Switching voltage V_{DU} , V_{DWL} and V_{DRL} versus temperature T_j

Output current limit I_{Q} versus input voltage V_{I}

5 Application information

5.1 Input, output

The input capacitors C_{11} and C_{12} are necessary for compensating line influences. Using a resistor of approx. 1 Ω in series with C_{11} , the LC circuit of input inductance and input capacitance can be damped. To stabilize the regulation circuit the output capacitor C_Q is necessary. Stability is ensured at values $C_Q \ge 10 \,\mu\text{F}$ with an ESR $\le 5 \,\Omega$ within the operating temperature range.

Figure 4 Application circuit

5.2 Reset timing

The power-on reset delay time is defined by the charging time of an external capacitor C_{D} which can be calculated as follows:

$$C_{\rm D} = (\Delta t_{\rm rd} \times I_{\rm D,c}) / \Delta V \tag{E}$$

Definitions:

- C_D = delay capacitor
- Δt_{rd} = delay time
- *I*_{D,c} = charge current, typical 5 μA
- $\Delta V = V_{DU}$, typical 1.9 V
- V_{DU} = upper delay switching threshold at C_{D} for reset delay time

The reset reaction time t_{rr} is the time it takes the voltage regulator to set the reset out "low" after the output voltage has dropped below the reset threshold. It is typically 1 µs for delay capacitor of 47 nF. For other values for C_D the reaction time can be estimated using **Equation (5.2)**:

$$t_{\rm rr} \approx 20 \, {\rm s/F} \times C_{\rm D}$$

Figure 5 Reset timing (watchdog disabled)

(5.2)

5.3 **Reset switching threshold**

The present default value is 4.65 V. When using the TLE4278 the reset threshold can be set to $3.5 \text{ V} < V_{0,rt} < 4.6 \text{ V}$ by connecting an external voltage divider to pin RADJ. The calculation can be easily done since the reset adjust input current can be neglected. If this feature is not needed, the pin must be connected to GND.

$$V_{\rm O,rt} = V_{\rm ref} \times (1 + R_1/R_2)$$

(5.3)

Definitions:

- $V_{0,rt}$ = Reset threshold
- V_{ref} = comparator reference voltage, typical 1.35 V (Reset adjust input current ≈ 50 nA)

Figure 6 **Reset switching threshold**

The reset output pin is internally connected to the 5 V output Q via a 30 kΩ pull-up resistor. Down to an output voltage V_0 of typical 1 V the reset "low" signal at pin RO is generated.

For the timing of the reset feature please refer to Figure 5.

(5.4)

Application information

5.4 Watchdog activating

The calculation of the external resistor which adjusts the watchdog switch off threshold can be done by **Equation (5.4)**:

 $R_{\rm WADJ} = V_{\rm WADJ,th} \times (I_{\rm Q}/I_{\rm WADJ})/I_{\rm Q,act}$

Definitions:

- V_{WADJ,th} = switch off threshold, typical 1.35 V
- I_Q/I_{WADJ} = current ratio, typical 720
- I_{Q,act} = switch off load current

Figure 7 Watchdog activating

5.5 Watchdog timing

The frequency of the watchdog pulses must be higher than the minimum pulse sequence which is set by the external reset delay capacitor $C_{\rm D}$. Calculation can be done according to the formulas given in **Figure 8**.

The watchdog output is internally connected to the output Q via a 30 k Ω pull-up resistor. To generate a watchdog created reset signal for the microcontroller the pin WO can be connected to the reset input of the microcontroller. It is also allowed to parallel the watchdog out to the reset out.

Figure 8 Timing of the watchdog function

5.6 Hints for unused pins

Table 6Hints for unused pins

Symbol	Function	Connect to
RO	Reset output	Open
D	Reset delay	Open or to output Q
RADJ	Reset switching threshold adjust	GND
WI	Watchdog input	GND
WO	Watchdog output	Open
WADJ	Watchdog adjust	 ¹⁾ To output Q via a 270 kΩ resistor: Watchdog always active ²⁾ To GND: Watchdog disabled

Package information

6 Package information

Figure 9 PG-DSO-14 (Plastic Dual Small Outline) ¹⁾

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages

https://www.infineon.com/packages

¹⁾ Dimension in mm

Revision history

7 Revision history

Revision	Date	Changes
1.5	2018-09-10	Updated layout and structure Updated packaged drawing "PG-DSO-14" Editorial changes

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-09-10 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference Z8F55294583

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.