

September 1991 Revised May 1999

DM81LS95A • DM81LS96A • DM81LS97A 3-STATE Octal Buffer

General Description

These devices provide eight, two-input buffers in each package. All employ low-power-Schottky TTL technology. One of the two inputs to each buffer is used as a control line to gate the output into the high-impedance state, while the other input passes the data through the buffer. The DM81LS95A and DM81LS97A present true data at the outputs, while the DM81LS96A is inverting. On the DM81LS95A and DM81LS96A versions, all eight 3-STATE enable lines are common, with access through a 2-input NOR gate. On the DM81LS97A version, four buffers are enabled from one common line, and the other four buffers are enabled form another common line. In all cases the outputs are placed in the 3-STATE condition by applying a high logic level to the enable pins.

Features

- Typical power dissipation
 DM81LS95A, DM81LS97A 80 mW
 DM81LS96A 65 mW
- Typical propagation delay

 DM81LS95A, DM81LS97A 15 ns

 DM81LS96A 10 ns
- Low power-Schottky, 3-STATE technology

Ordering Code:

Order Number	Package Number	Package Description
DM81LS95AWM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
DM81LS95AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
DM81LS96AWM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
DM81LS96AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
DM81LS97AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

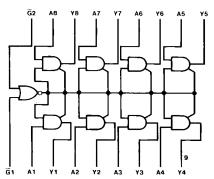
Connection Diagram

Pin Descriptions

DM81LS95A and DM92LS96A

Pin Names	Descriptions
A1-A8	Inputs
Y1-Y8	Outputs
<u>G</u> 1− <u>G</u> 2	Active LOW Output Enables (Note 1)

Note 1: Both $\overline{G}1$ and $\overline{G}2$ must be LOW for outputs to be enabled.

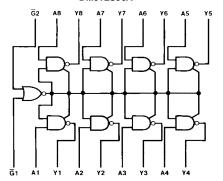

DM81LS97A

Pin Names	Descriptions
A1-A8	Inputs
Y1-Y8	Outputs
G ₁	Active LOW Output Enable (Y1-Y4)
G2	Active LOW Output Enable (Y5–Y8)

DM81LS95A • DM81LS96A • DM81LS97A

Logic Symbols

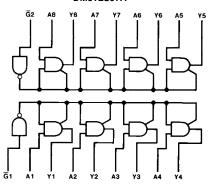
DM81LS95A



Truth Tables

DM81LS95A

	Inputs				
G 1	G2	Α	Υ		
Н	Х	Х	Hi-Z		
Χ	Н	Χ	Hi-Z		
L	L	Н	Н		
L	L	L	L		



DM81LS96A

		Inputs		Output
	G 1	G 2	Α	Y
Ī	Н	Х	Х	Hi-Z
	Χ	Н	Χ	Hi-Z
	L	L	Н	L
	L	L	L	Н

DM81LS97A

DM81LS97A

Inp	outs	Output
- G1	A1-A4	Y1-Y4
Н	X	Hi-Z
L	Н	Н
L	L	L
G2	A5-A6	Y5-Y8
Н	X	Hi-Z
L	Н	Н
L	L	L

Absolute Maximum Ratings(Note 2)

Storage Temperature Range

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range 0°C to +70°C

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The Recommended Operating Conditions table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
ОН	HIGH Level Output Current			-5.2	mA
OL	LOW Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C

 $-65^{\circ}C$ to $+150^{\circ}C$

DC Electrical Characteristics DM81LS95A and DM81LS97A

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter		Conditions		Min	Typ (Note 3)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I =$	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, I_O$	V _{CC} = Min, I _{OH} = Max					V
		$V_{IL} = Max, V_{II}$	H = Min		2.7			V
V _{OL}	LOW Level Output Voltage V _{CC} = Min, I _{OL} = Max		_L = Max				0.5	
		$I_{OL} = Max, V_{II}$	H = Min				0.5	V
		$I_{OL} = 12 \text{ mA},$	V _{CC} = Min				0.4	
I _I	Input Current @ Max	V _{CC} = Max, V	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						0.1	mA
I _{IH}	HIGH Level Input Current	V _{CC} = Max, V	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
I _{IL}	LOW Level Input Current	V _{CC} = Max	$V_{I} = 0.5V$	A (Note 4)			-20	
			$V_I = 0.4V$	A (Note 5)			-50	μΑ
				G			-50	
l _{ozh}	Off-State Output Current	V _{CC} = Max, V	O = 2.4V					
	with HIGH Level Output	$V_{IH} = Min, V_{IL}$	= Max				20	μΑ
	Voltage Applied							
l _{OZL}	Off-State Output Current	V _{CC} = Max, V	O = 0.4V					
	with LOW Level Output	$V_{IH} = Min, V_{IL}$	= Max				-20	μΑ
	Voltage Applied							
los	Short Circuit	V _{CC} = Max	V _{CC} = Max				400	A
	Output Current	(Note 6)			-20		-100	mA
Icc	Supply Current	V _{CC} = Max (N	lote 4)			16	26	mA

Note 3: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 4: Both \overline{G} inputs are at 2V.

Note 5: Both $\overline{\mathsf{G}}$ inputs are at 0.4V.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

AC Electrical Characteristics DM81LS95A and DM81LS97A

 $V_{CC}=5V,\,T_A=25^{\circ}C$

Symbol	Parameter	C _L =	C _L = 50 pF		C _L = 150 pF	
		Min	Max	Min	Max	İ
t _{PLH}	Propagation Delay Time		16		25	ns
	LOW-to-HIGH Level Output	10		23	115	
t _{PHL}			40	ns		
	HIGH-to-LOW Level Output		20		40	113
t _{PZH}	Output Enable Time		25		30	ns
	to HIGH Level Output		20	20	00	110
t _{PZL}	Output Enable Time		30		42	ns
	to LOW Level Output		30		42	115
t _{PHZ}	Output Disable Time		20			ns
	from HIGH Level Output (Note 7)		20			113
t _{PLZ}	t _{PLZ} Output Disable Time 27			ns		
	from LOW Level Output (Note 7)		21			113

Note 7: C_L = 5 pF.

DC Electrical Characteristics DM81LS96A

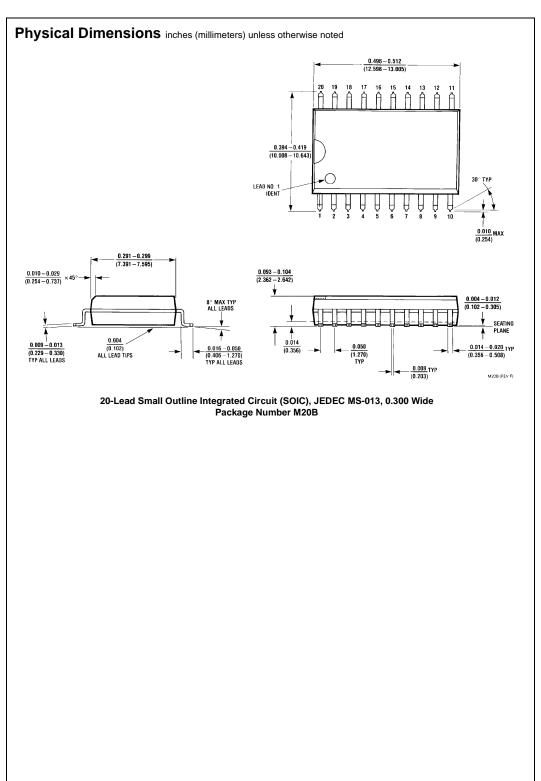
over recommended operating free air temperature range (unless otherwise noted)

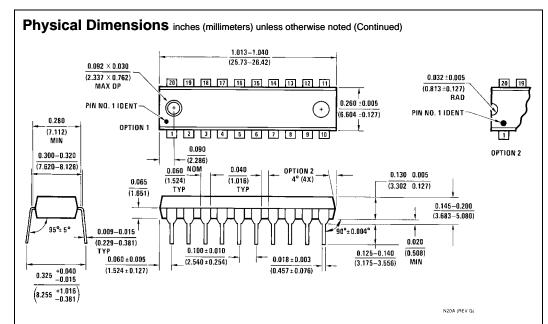
Symbol	Parameter	Conditions		Min	Typ (Note 8)	Max	Units	
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$					-1.5	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, I_O$	V _{CC} = Min, I _{OH} = Max		2.7			V
		$V_{IL} = Max, V_{II}$	$V_{IL} = Max, V_{IH} = Min$		2.7			v
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, I_O$	V _{CC} = Min, I _{OL} = Max				0.5	
		$I_{OL} = Max, V_{II}$	I _{OL} = Max, V _{IH} = Min				0.5	V
		$I_{OL} = 12 \text{ mA},$	V _{CC} = Min				0.4	<u> </u>
II	Input Current @ Max	V _{CC} = Max, V	V _{CC} = Max, V _I = 7V				0.1	mA
	Input Voltage						0.1	IIIA
I _{IH}	HIGH Level Input Current	V _{CC} = Max, V	' _I = 2.7V				20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = Max$	$V_I = 0.5V$	A (Note 9)			-20	
			$V_I = 0.4V$	A (Note 10)			-50	μА
				G			-50	Ì
I _{OZH}	Off-State Output Current	V _{CC} = Max, V	′ _O = 2.4V	I				
	with HIGH Level Output	$V_{IH} = Min, V_{IL}$	= Max				20	μΑ
	Voltage Applied							
I _{OZL}	Off-State Output Current	V _{CC} = Max, V	' _O = 0.4V					
	with LOW Level Output	$V_{IH} = Min, V_{IL}$	= Max				-20	μΑ
	Voltage Applied							
Ios	Short Circuit	$V_{CC} = Max$			-20		-100	mA
	Output Current	(Note 11)			-20		-100	IIIA
I _{CC}	Supply Current	V _{CC} = Max (N	lote 10)			13	21	mA

Note 8: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 9: Both $\overline{\mathsf{G}}$ inputs are at 2V.

Note 10: Both $\overline{\mathsf{G}}$ inputs are at 0.4V.


Note 11: Not more than one output should be shorted at a time, and the duration should not exceed one second.


AC Electrical Characteristics DM81LS96A

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$

		$R_L = 667 \Omega$				
Symbol	Parameter	C _L =	50 pF	C _L = 150 pF		Units
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time		10		16	ns
	LOW-to-HIGH Level Output		10		10	115
t _{PHL}	Propagation Delay Time		17		30	ns
	HIGH-to-LOW Level Output		17		30	115
t _{PZH}	Output Enable Time		15		30	ns
	to HIGH Level Output		15	13	30	115
t _{PZL}	Output Enable Time		35		45	ns
	to LOW Level Output		33		45	115
t _{PHZ}	Output Disable Time		20			ns
	from HIGH Level Output (Note 12)		20			115
t _{PLZ}	Output Disable Time		27			ns
	from LOW Level Output (Note 12)		21	27		115

Note 12: C_L = 5 pF.

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com