

DTPA-UART-3232

Non-contact 32 x 32 Pixel Infrared Temperature Sensor

Product Specifications

	laborator	y tempera	ture condi	tions: 25℃.
Parameter	min	Тур	Max	Unit
Supply voltage	4.5	5	5.5	v
Supply current		35		mA
pixels		1024		рх
Spectral range	7.7		15	μm
Object temperature range(*)	-10		200	°C
Operating temperature	-20		70	°C
IR refresh rate		2		Hz
Accuracy(**)		±2		%
Resolution digital		0.1		°C
Emissivity(fixed)		0.97		ε
Standard start-up time		30		sec
Stabilization time	1			min
FOV	33° × 33°			
Weight (without cable)	8.3g			
Communication interface		UART TTL		
Relative humidity	95% Max. non-condensing		nsing	

*: The DTPA can detect higher temperatures, but is not calibrated above 200° **: $\pm 2\%$ of reading or $\pm 2^{\circ}$ C whichever is greater. All accuracy specifications only apply under settled isothermal conditions and specified for the central pixel(527).

32 x 32 Optical Orientation

Dimensions / Pin Configuration

Bottom view	No.	Name	Description
	1	5V	supply voltage
	2	TX	UART Output 3.3V
	3	DV	UART Input 3.3V
° 4321 ⊙ ⋯⋯ ○	5	RX	(5V tolerant)
	4	GND	ground

% Connector information: molex

- pcb side 5267-04A (P/N 22035045)
- mates with 5264-04 (P/N 50375043)

Calculate Field of View

The FOV determines the size of the infrared measurement area according to the distance.

e.g. Y = 100cm*0.296213*2 ≒ 59.243 cm Y = 200cm*0.296213*2 ≒ 118.485 cm

DTPA-UART-3232

Non-contact 32 x 32 Pixel Infrared Temperature Sensor

UART Protocol

Address map

- BaudRate: 115,200bps(fixed), data bit: 8, stop bit:1, parity: none, flow control: none - I/O is 3.3V LV TTL (5V tolerant)

Timing

- The minimum data request cycle is 500ms, regardless of the number of request data.

UART Data Format

- request command

- The frame of request data consists of 6 bytes. The byte structure is explained below. Note that an 'X' refers to a variable bit containing dynamic data.

Request (main → DTPA)				
Byte	Field Name	data	DEC	
1	START	0x11	17	
2	Start Address(MSB)	0b00000XXX	0 1024(*)	
3	Start Address(LSB)	0bxxxxxxxx	01024(*)	
4	No. of Register(MSB)	0b00000XXX	11025(**)	
5	No. of Register(LSB)	0bxxxxxxxx		
6	END	0x98	152	

(*) Start Address(SA): minimum: 0 maximum: 1024

(**) No. of Register(NR) \leq (1025-SA) , minimum:1, maximum: 1025

The accessible address is limited to the address map table. Otherwise there is no response from the sensor.(see Address map)

e.g. SA:1024, NR: 1 (ok)

SA:1024, NR: 2 (X) - no response

SA:1, NR:1025 (X) - no response

The (SA, NR, response data)structure would be: 0x[MSB][LSB], where MSB and LSB are each two hexadecimal numbers (8 bits).

- response data

- The number of bytes in the response frame depends on the NR.

Response (DTPA → main)					
Byte	Field Name	data	DEC		
1	START(MSB)	0x16	22		
2	START(LSB)	0x98	152		
3	Temperature of the SA(MSB)	0xXX			
4	Temperature of the SA(LSB)	0xXX			
(NR*2)+1	Temperature of the end address(MSB)	0xXX			
(NR*2)+2	Temperature of the end address(LSB) 0xXX				
(NR*2)+3	END(MSB) 0x1A 26				
(NR*2)+4	END(LSB)	0x9C	156		

e.g. No. of Register(NR): 2 → total response bytes: (2*2)+4 = 8 bytes No. of Register: 1025 → (1025*2)+4= 2054 bytes

Addı	ress	Data Length	_	
HEX	DEC	Short	Туре	Description
0x0000	0	1	Signed	Ambient Temperature(Ta)
0x0001	1	1	Signed	Temperature of PIXEL 0
0x0002	2	1	Signed	Temperature of PIXEL 1
0x0003	3	1	Signed	Temperature of PIXEL 2
0x0004	4	1	Signed	Temperature of PIXEL 3
:	:	:	:	:
:	:	:	:	:
0x03FF	1023	1	Signed	Temperature of PIXEL 1022
0x0400	1024	1	Signed	Temperature of PIXEL 1023

The data is in 2's complement format.

- Request command examples: Read all temperatures: 0x11,<u>0x00,0x00</u>,<u>0x04,0x01</u>,0x98 (6-byte) SA: 0 NR: 0x0401(1025d)

Read PIXEL 0...1023: 0x11,0x00,0x01,0x04,0x00,0x98 (6-byte) SA: 1 NR: 0x0400(1024d)

Temperature Calculation

The result is calculated by following expressions (valid for both PIXEL and Ta): 1. Convert it to decimal value i.e. 0x016D = 365d

2. Multiply by 0.1(or divide by 10) i.e. $365 \times 0.1 = 36.5^{\circ}C$ $0xFFF1 = -15 \rightarrow -1.5^{\circ}C$ $0xFF9C = -100 \rightarrow -10.0^{\circ}C$ $0x0FF = 255 \rightarrow 25.5^{\circ}C$

Tutorial (Raspberry Pi 2)

- Requirements

Hardware: Raspberry Pi 2 , DTPA-UART-3232 Software: wiringPi library

- Connection Diagram

- Sample code

https://www.diwellshop.com/web/en/DTPA/DTPA_raspberry2_example.zip

- Expected Results.

Ta: 32.1						
pixel Tempera	ature:					
Op(26.3)						
1p(25.7)	2p(25.3)	3p(26.4)	4p(25.5)	5p(26.9)	6p(25.0)	7p(25.6)
8p(25.4)	9p(25.8)	10p(26.5)	11p(25.4)	12p(26.9)	13p(26.2)	14p(26.3)
15p(25.7)	16p(25.6)	17p(25.9)	18p(26.5)	19p(26.9)	20p(24.7)	21p(25.6)
22p(26.5)	23p(27.3)	24p(28.7)	25p(29.2)	26p(29.6)	27p(28.5)	28p(28.1)
29p(26.7)	30p(28.3)	31p(28.0)	32p(26.8)	33p(26.3)	34p(26.2)	35p(25.3)

SA:1, NR:1024 (ok)

DTPA-UART-3232

Non-contact 32 x 32 Pixel Infrared Temperature Sensor

Products handling precaution

- When it comes to dust removal by air, the best method is to use a blower, and to avoid using compressed air.
- % Do not press the lens with your hands or any other object.
- $\ensuremath{\mathbbmm{X}}$ Do not scratch the lens surface with sharp objects.
- $\ensuremath{\mathbb{X}}$ Voluntary disassembly and modification of the product is prohibited.
- $\ensuremath{\mathbbmm}$ Avoid direct sunlight, chemical substance, heat or fire.
- % Water resistance is not guaranteed.
- $\ensuremath{\mathbbmm{X}}$ Do not hold the sensor by hand during the measurement.
- ※ For stable temperature measurement, avoid measurement immediately after turning on the power of the sensor. And power must always be supplied, not on/off

PC Software

The program runs in the Windows 10 environment.

- It is not guaranteed to be used on other OS.
- For more information, refer to the Test Board manual.

https://www.diwellshop.com/web/en/DTPA/DTPA-UART-3232_Testboard_en.pdf

- sample images

Additional information

Manufacturer: DIWELL Electronics Co., Ltd. (South Korea) Technical support: mailto:expoeb2@diwell.com, mailto:dsjeong@diwell.com

Revision history

Version	Date(Y,M,D)	Description
1.0.0	2022. 5. 27.	First version is released