

Silicon Carbide (SiC) MOSFET – EliteSiC, 20 mohm, 1200 V, M1, TO-247-4L

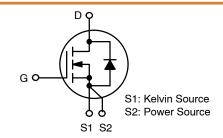
NTH4L020N120SC1

Features

- Typ. $R_{DS(on)} = 20 \text{ m}\Omega$
- Ultra Low Gate Charge $(Q_{G(tot)} = 220 \text{ nC})$
- High Speed Switching with Low Capacitance (Coss = 258 pF)
- 100% Avalanche Tested
- $T_J = 175^{\circ}C$
- This Device is Halide Free and RoHS Compliant with exemption 7a, Pb–Free 2LI (on second level interconnection)

Typical Applications

- UPS
- DC-DC Converter
- Boost Inverter

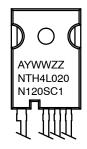

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	1200	V
Gate-to-Source Voltage	ı		V_{GS}	-15/+25	٧
Recommended Operation Values of Gate-to-Source Voltage		V_{GSop}	-5/+20	>	
Continuous Drain Current (Note 2)	Steady T _C = 25°C State		I _D	102	Α
Power Dissipation (Note 2)			P _D	510	W
Continuous Drain Current (Notes 1, 2)	Steady State	T _C = 100°C	I _D	84	Α
Power Dissipation (Notes 1, 2)			P _D	255	W
Pulsed Drain Current (Note 3)	T _A = 25°C		I _{DM}	408	Α
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +175	°C	
Source Current (Body Diode)			Is	46	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 23 A, L = 1 mH) (Note 4)			E _{AS}	264	mJ
Maximum Lead Temperature for Soldering (1/8" from case for 5 s)			TL	300	°C
			_		_

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- JA is constant value to follow guide table of LV/HV discrete final datasheet generation.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 3. Repetitive rating, limited by max junction temperature.
- 4. EAS of 264 mJ is based on starting $T_J = 25^{\circ}\dot{C}$; L = 1 mH, $I_{AS} = 23$ A, $V_{DD} = 120$ V, $V_{GS} = 18$ V.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
1200 V	28 mΩ @ 20 V	102 A



N-CHANNEL MOSFET

TO-247-4LD CASE 340CJ

MARKING DIAGRAM

A = Assembly Location

Y = Year

WW = Work Week

ZZ = Lot Traceability

NTH4L020N120SC1 = Specific Device Code

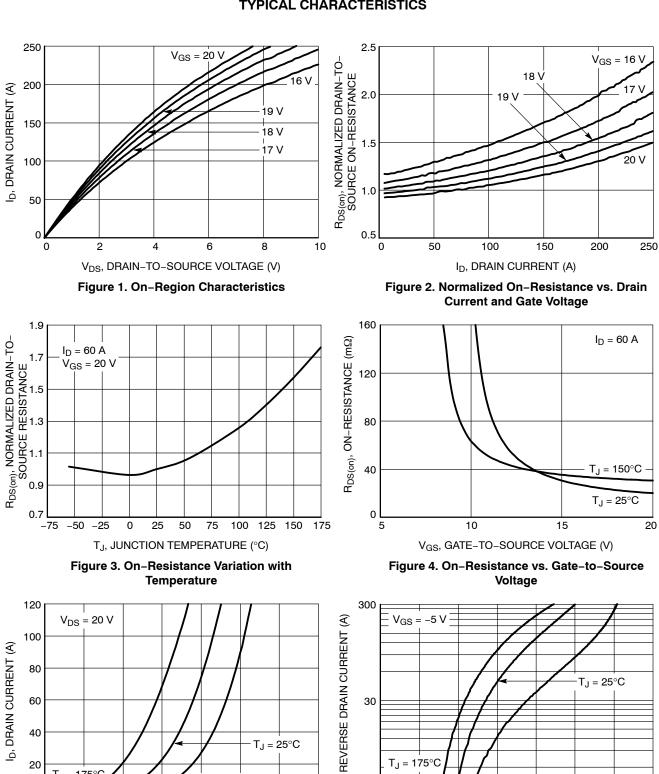
ORDERING INFORMATION

Device	Package	Shipping
NTH4L020N120SC1	TO-247-4LD	30 Units / Tube

Table 1. THERMAL RESISTANCE MAXIMUM RATINGS

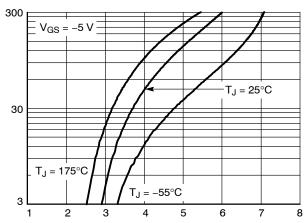
Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ heta JC}$	0.3	°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)	$R_{\theta JA}$	40	

Table 2. ELECTRICAL CHARACTERISTICS (T. J = 25°C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS			<u> </u>				
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA		1200	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 1 mA, referenced to 25°C		-	0.5	-	V/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, T _J	= 25°C	-	-	100	μΑ
		V _{DS} = 1200 V	= 175°C	-	-	1	mA
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = +25/-15 \text{ V}, V_{DS} = 0$	V	-	-	±1	μΑ
ON CHARACTERISTICS (Note 3)			•	<u> </u>			
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 20 \text{ mA}$		1.8	2.7	4.3	V
Recommended Gate Voltage	V_{GOP}			-5	-	+20	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 20 V, I _D = 60 A, T _J =	= 25°C	-	20	28	mΩ
		V _{GS} = 20 V, I _D = 60 A, T _J =	= 175°C	-	37	50	
Forward Transconductance	9FS	V _{DS} = 20 V, I _D = 60 A		-	3.6	-	S
CHARGES, CAPACITANCES & GATE RES	SISTANCE		<u> </u>				
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 800 V		-	2943	-	pF
Output Capacitance	C _{OSS}			-	258	-	
Reverse Transfer Capacitance	C _{RSS}			-	24	-	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -5/20 \text{ V}, V_{DS} = 600 \text{ V},$ $I_D = 80 \text{ A}$		-	220	-	nC
Threshold Gate Charge	Q _{G(TH)}			-	33	-	
Gate-to-Source Charge	Q _{GS}			-	66	-	
Gate-to-Drain Charge	Q_{GD}			-	63	-	
Gate-Resistance	R _G	f = 1 MHz		-	1.6	-	Ω
SWITCHING CHARACTERISTICS, VGS =	10 V		•	<u> </u>			
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -5/20 \text{ V}, V_{DS} = 800 \text{ V},$		-	21.6	35	ns
Rise Time	t _r	I_D = 80 A, R_G = 2 Ω Inductive load		-	21	34	
Turn-Off Delay Time	t _{d(OFF)}			_	41	66	
Fall Time	t _f		ļ	-	10	20	
Turn-On Switching Loss	E _{ON}		F	-	494	_	μJ
Turn-Off Switching Loss	E _{OFF}			-	397	-	
Total Switching Loss	E _{tot}			-	891	-	
DRAIN-SOURCE DIODE CHARACTERIST	ics		•	<u> </u>	J	<u> </u>	
Continuous Drain-Source Diode Forward Current	I _{SD}	V _{GS} = -5 V, T _J = 25°C		-	-	46	Α
Pulsed Drain-Source Diode Forward Current (Note 3)	I _{SDM}			-	-	408	
Forward Diode Voltage	V _{SD}	$V_{GS} = -5 \text{ V}, I_{SD} = 30 \text{ A}, T_{J} = 25^{\circ}\text{C}$		_	3.7	-	V
Reverse Recovery Time	t _{RR}	V _{GS} = -5/20 V, I _{SD} = 80 A, dI _S /dt = 1000 A/μs		-	30	_	ns
Reverse Recovery Charge	Q _{RR}			_	225	_	nC

 $\textbf{Table 2. ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise specified}) \ (continued)$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTERISTICS						
Reverse Recovery Energy	E _{REC}	$V_{GS} = -5/20 \text{ V}, I_{SD} = 80 \text{ A},$	-	16	-	μJ
Peak Reverse Recovery Current	I _{RRM}	$dI_S/dt = 1000 A/\mu s$	-	15	-	Α
Charge Time	Ta		-	16	-	ns
Discharge Time	Tb		-	15	-	ns


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

100 ID, DRAIN CURRENT (A) 80 60 40 $T_J = 25^{\circ}C$ 20 $T_{J} = 175^{\circ}C$ $T_J = -55^{\circ}C$ 0 4 6 8 12 14 16 2 V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 5. Transfer Characteristics

V_{SD}, BODY DIODE FORWARD VOLTAGE (V) Figure 6. Diode Forward Voltage vs. Current

<u>ŵ</u>

TYPICAL CHARACTERISTICS (CONTINUED)

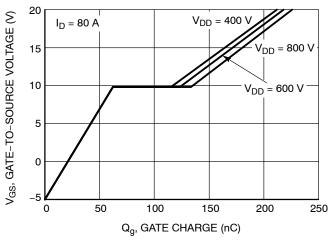


Figure 7. Gate-to-Source Voltage vs. Total Charge

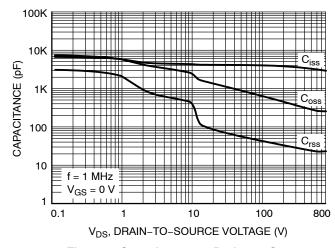


Figure 8. Capacitance vs. Drain-to-Source Voltage

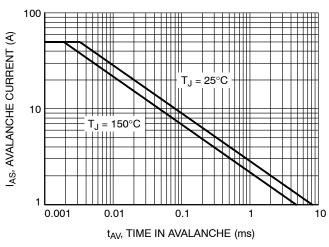


Figure 9. Unclamped Inductive Switching Capability

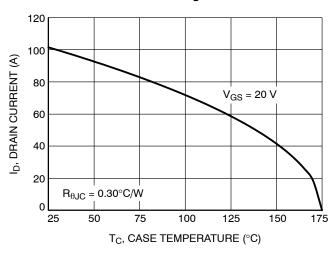


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

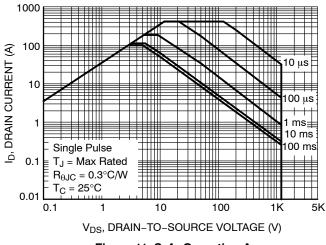


Figure 11. Safe Operating Area

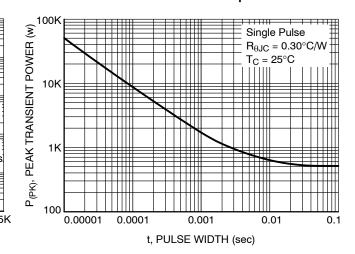


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (CONTINUED)

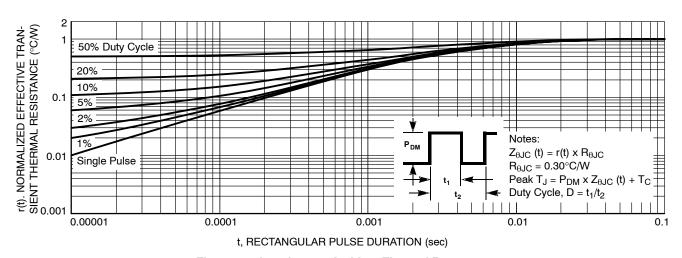
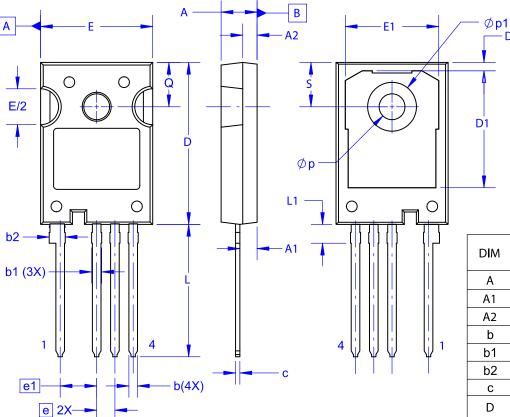



Figure 13. Junction-to-Ambient Thermal Response

TO-247-4LD CASE 340CJ **ISSUE A**

DATE 16 SEP 2019

D2

NOTES:

0.254 M

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
 B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
 FLASH, AND TIE BAR EXTRUSIONS.
 C. ALL DIMENSIONS ARE IN MILLIMETERS.
 D. DRAWING CONFORMS TO ASME Y14.5-2009.

DIM	MIN	NOM	MAX		
Α	4.80	5.00	5.20		
A1	2.10	2.40	2.70		
A2	1.80	2.00	2.20		
b	1.07	1.20	1.33		
b1	1.20	1.40	1.60		
b2	2.02	2.22	2.42		
С	0.50	0.60	0.70		
D	22.34	22.54	22.74		
D1	16.00	16.25	16.50		
D2	0.97	1.17	1.37		
е	2.54 BSC				
e1	5.08 BSC				
E	15.40	15.60	15.80		
E1	12.80	13.00	13.20		
E/2	4.80	5.00	5.20		
L	18.22	18.42	18.62		
L1	2.42	2.62	2.82		
р	3.40	3.60	3.80		
p1	6.60	6.80	7.00		
Q	5.97	6.17	6.37		
S	5.97	6.17	6.37		

MILLIMETERS

DOCUMENT NUMBER:	98AON13852G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor, Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-4LD		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales