

S1V30080 Series Hardware Specifications

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of Economy, Trade and Industry or other approval from another government agency.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©SEIKO EPSON CORPORATION 2009, All rights reserved.

Table of Contents

1.	Overview	1
2.	Features	2
	Product Configuration	
4.	Pin Layout	4
	4.1 SSOP2-16 (external clock input)	4
	4.2 SSOP2-16 (oscillator connection)	5
	4.3 QFP12-48	6
	4.4 QFP13-52 (external clock input)	7
	4.5 QFP13-52 (oscillator connection)	8
5.	Pin Description	9
	5.1 Pin Description 1	9
	5.2 Pin Description 2	. 11
6.	Function Description	. 14
	6.1 Standard application system	. 14
	6.2 System clock	. 15
	6.3 Host interface	. 16
7.	Electrical Characteristics	. 17
	7.1 Absolute maximum ratings	
	7.2 Recommended operating conditions	. 17
	7.3 DC characteristics	. 18
	7.3.1 DC characteristics with power supply voltage 5.0 V \pm 0.5 V	
	7.3.2 DC characteristics with power supply voltage 3.3 V \pm 0.3 V	
	7.3.3 DC characteristics with power supply voltage 2.4 V \pm 0.2 V	. 22
	7.3.4 Operating power supply current and internal system clock frequency characteristics	. 24
	7.4 AC characteristics	. 25
	7.4.1 System clock timing	. 25
	7.4.2 Power on/reset timing	. 26
	7.4.3 Command receipt timing	. 27
	7.4.4 Standalone mode control timing	. 28
	7.4.5 Initialization timing from external serial flash memory	. 29
	7.4.6 Serial host interface (SPI)	. 30
	7.4.7 Serial host interface (I2C)	
	7.4.8 MSG_RECEIVE output	. 32
	7.4.9 SOUND_PLAYING output	
	7.4.10 External serial flash memory access timing	. 34
	7.4.11 Power supply disconnection timing	. 35

7.4.12 Sleep mode start timing using CE pin	36
8. External Connection Examples	37
8.1 System clock	37
8.1.1 Direct input	37
8.1.2 Oscillator	38
8.2 Serial host interface	40
8.2.1 SPI	40
8.2.2 I2C	41
8.3 Standalone connection	42
8.4 External serial flash memory interface	43
8.5 Sleep mode control using CE pin	44
9. Package Information	45
9.1 SSOP2-16	45
9.2 QFP12-48	46
9.3 QFP13-52	47
10. Reference Material	48
10.1 Practical circuit example (SSOP2-16)	48
10.2 Practical circuit example (QFP12-48/13-52)	49
10.3 Practical circuit example (Audio output section)	50
10.4 Mute start/cancel timing	51
10.5 Precautions concerning power supply	52
10.6 Clock direct input precautions	53
10.7 Mounting precautions	54
10.7.1 Oscillator circuit	54
10.7.2 Reset circuit	55
10.7.3 Power supply	55
10.7.4 Signal line location	55
10.7.5 Malfunction due to noise	56
10.7.6 Miscellaneous	56
10.8 Product code scheme	57
Revision History	58

1. Overview

The S1V30080 is a highly-integrated voice guidance IC that enables products featuring voice guidance to be brought to market quickly and efficiently. The device supports multi-channel speech/sound playback from on-chip ROM, whose contents can be created using EPSON's PC-based voice data creation tool. This converts text into high-quality voice waveform data, without the need for studio recording.

A built-in melody synthesizer allows musical effects and buzzer sounds to be combined with the speech/sound playback. Musical data for the melody synthesizer occupies an extremely small memory footprint, and the speech/sound playback and melody synthesizer work independently of one another; they can be mixed, with individual volume settings applied to each.

The S1V30080 can be easily controlled by a host processor using a serial interface, but the device also supports a standalone operational mode, which does not require a host processor.

2. Features

• Melody/Buzzer/Tone synthesizer function

- 5-channel melody sound can be created from music note information (5-octave range supported).
- Buzzer/tone sounds can be generated simply by specifying the frequency (5 channels supported).

• Speech/Sound playback

- Individual 2ch Voice ROM data can be played (Epson original data format).
- Sampling Frequency: 4, 8, 12, 16 kHz

• Sequencer function (to set delay between phrases)

- Up to 127 files can be sequenced with one configuration message (no constraints on phrase combinations).
- Delay setting can be set between phrases: 0 1,000 ms (in 10 ms steps)

• Mixing function

- Synthesizer and speech/sound playback from ROM can be mixed (individual volume settings supported).

• Internal voice data ROM

- fs 8 kHz: approx. 30 sec, fs 16 kHz: approx. 15 sec

• External serial flash memory access

- External serial flash memory access possible with package option. (S1V30080F00**00 and S1V30080F10**00)

• Serial host interface

- Synchronous serial interface (SPI, I2C) (command control)

• Standalone mode

- Simply by specifying the sound file number, the sound can be played from ROM or the melody synthesizer.
- Internal DA converter clock (external clock input/crystal oscillator/ceramic oscillator) - fs 8 kHz: 8.192 MHz, fs 16 kHz: 16.384 MHz

• Package

- SSOP-16-pin (4.4 mm x 6.6 mm, 0.8 mm pin pitch)
- QFP-48-pin (7 mm x 7 mm, 0.5 mm pin pitch): Supports external serial flash memory
- QFP-52-pin (10 mm x 10mm, 0.65mm pin pitch): Supports external serial flash memory

(S1V30080F10**00 only)

• Power supply voltage

- 2.2 - 5.5 V single power supply

3. Product Configuration

Table 3.1 shows S1V30080 Series product configurations.

Products differ with respect to system clock source and package type.

Product code	System clock source	External serial flash	Package
		memory	
S1V30080M00**00	External clock input	Cannot be connected	SSOP2-16
S1V30080M01**00	Oscillator connection	Cannot be connected	SSOP2-16
S1V30080F00**00	External clock input	Can be connected	QFP12-48
S1V30080F10**00	External clock input	Can be connected	QFP13-52
S1V30080F11**00	Oscillator connection	Cannot be connected	QFP13-52

Table 3.1 S1V30080 Series product configurations

4. Pin Layout

4.1 SSOP2-16 (external clock input)

No.	I/O	S1V30080_SSOP2-16
1	I	SCKS
2	IO	SOS
3	IO	MSG_RECEIVE
4	Р	VSS
5	Р	VDD
6	Р	VOUT
7	I	CE
8	I	SYSTEM_EN
9	0	SOUND_PLAYING
10	0	SOUND_OUT_N
11	0	SOUND_OUT_P
12	Р	VSS
13	Ι	CLKI
14	Ρ	VSS
15	Ι	TESTEN
16	IO	SIS

SCKS	1 16	SIS
SOS	2 15	TESTEN
MSG_RECEIVE	3 14	VSS
VSS	4 13	CLKI
VDD	5 12	VSS
VOUT	6 11	SOUND_OUT_P
CE	7 10	SOUND_OUT_N
SYSTEM_EN	8 9	SOUND_PLAYING

Figure 4.1 SSOP2-16 (external clock input) pin layout

4.2 SSOP2-16 (oscillator connection)

No.	I/O	S1V30080_SSOP2-16
1	I	SCKS
2	IO	SOS
3	IO	MSG_RECEIVE
4	Р	VSS
5	Р	VDD
6	Р	VOUT
7	I	CE
8	I	SYSTEM_EN
9	0	SOUND_PLAYING
10	0	SOUND_OUT_N
11	0	SOUND_OUT_P
12	Р	VSS
13	1	OSCI
14	Р	OSCO
15	I	TESTEN
16	IO	SIS

Figure 4.2 SSOP2-16 (oscillator connection) pin layout

4.3 QFP12-48

No	1/0	S1V30080_QFP12-48
1	"O I	SCKS
-	10	SOS
	10	MSG RECEIVE
-	0	NISG_RECEIVE
4		
5		FLASH_EN
	Ρ	VSS
	Р	VDD
8	Р	VOUT
9		-
10		-
11	I	CE
12	I	SYSTEM_EN
13		
-24		-
25	0	SOUND_PLAYING
26	0	SOUND_OUT_N
27	0	SOUND_OUT_P
28	0	FLASH_NSCSM
29	Ρ	VSS
30	I	CLKI
31	Р	VSS
32	0	FLASH_SOM
33	0	FLASH_SCKM
34	I	FLASH_SIM
35	I	TESTEN
36	10	SIS
37		
-48		-

Figure 4.3 QFP12-48-pin layout

4.4 QFP13-52 (external clock input)

No.	I/O	S1V30080_QFP13-52
-	I	SCKS
2	10	SOS
3	10	MSG_RECEIVE
4		-
5		FLASH_EN
6		-
7	Р	VSS
8	Ρ	VDD
9	Р	VOUT
10		-
11		-
12	I	CE
13	I	SYSTEM_EN
14		
-26		-
27	0	SOUND_PLAYING
28	0	SOUND_OUT_N
29	0	SOUND_OUT_P
30	0	FLASH_NSCSM
31	Р	VSS
32	I	CLKI
33	Ρ	VDD
34	Р	VSS
35	0	FLASH_SOM
36	0	FLASH_SCKM
37	I	FLASH_SIM
38		TESTEN
39	10	SIS
40		
-52		-

Figure 4.4 QFP13-52 (external clock input) pin layout

4.5 QFP13-52 (oscillator connection)

Figure 4.5 QFP13-52 (oscillator connection) pin layout

5. Pin Description

- Key
 - I: Input pin
 - O: Output pin
 - IO: Bidirectional pin
 - P: Power supply pin
 - Z: High impedance
- I/O cell types

Code	Function							
IC	LVCMOS input							
IH	LVCMOS Schmitt input							
01	Output buffer (output current 2.0 mA / -2.0 mA @5.0 V (typ.))							
02	Output buffer (output current 4.0 mA / -4.0 mA @5.0 V (typ.))							
T1	3-state output buffer (output current 2.0 mA / -2.0 mA @5.0 V (typ.))							
BC1	Bidirectional buffer (output current 2.0 mA / -2.0 mA @5.0 V (typ.))							
BH1	Bidirectional buffer Schmitt input (output current 2.0 mA / -2.0 mA @5.0 V (typ.))							
LLIN	Transparent input (1.8 V)							
LLOT	Transparent output (1.8 V)							
HLIN	Transparent input (VDD)							
ITST1	Test input with pull-down resistance (120 k Ω @ 1.8 V (typ.))							

5.1 Pin Description 1

Package types

- PKG1:SSOP2-16 (external clock input)PKG2:SSOP2-16 (oscillator connection)
- PKG3: QFP12-48

Pin name (SPI/ I2C/ Standalone)	PKG 1	PKG 2	PKG 3	I/O	l/O cell type	State when SYSTEM_EN=L	State when CE=L	l/O power supply	Function
Host interface									
SIS/ SDA/ SET_PLAY0	16	16	36	Ю	BH1	Z	Z	VDD	[SPI] Serial data input [I2C] Data input/output [Standalone] SET_PLAY0
SCKS/ SCL/ SET_PLAY1	1	1	1	I	IH1	Z	Z	VDD	[SPI] Serial clock input [I2C] Serial clock input [Standalone] SET_PLAY1
SOS/ -/ SET_PLAY2	2	2	2	Ю	BH1	Z	Z	VDD	[SPI] Serial data output [I2C] Fixed to Low externally [Standalone] SET_PLAY2
MSG_RECEIVE/ MSG_RECEIVE/ SET_PLAY3	3	3	3	Ю	BH1	Z	Z	VDD	[SPI] Serial data receipt ended [I2C] Serial data receipt ended [Standalone] SET_PLAY3
SOUND_PLAYING	9	9	25	0	O1	L	Z	VDD	Sound output interval output

Pin name	PKG 1	PKG 2	PKG 3	I/O	l/O cell type	State when SYSTEM_EN = L	State when CE = L	I/O power supply	Function
Audio output									
SOUND_OUT_P	11	11	27	0	O2	L	Z	VDD	Sound output (positive phase)
SOUND_OUT_N	10	10	26	0	O2	L	Z	VDD	Sound output (negative phase)
System clock									
CLKI	13	-	30	I	ІН	Z	Z	VDD	Clock input (refer to Section 6.2)
OSCI	-	13	-	I	LLIN	Z	Z	-	Oscillator connector pin (refer to Section 6.2)
OSCO	-	14	-	0	LLOT	-	-	-	Oscillator connector pin (refer to Section 6.2)
System control									
CE	7	7	11	I	HLIN	Z	-	VDD	Internal stepdown regulator Operating (H)/Stopped (L)
SYSTEM_EN	8	8	12	I	Ξ	-	z	VDD	System operation (H)/ Stopped (L)
Test input/output				-					
TESTEN	15	15	35	I	ITST1	Pull-down	Pull-down	-	Test mode control pin (Normally fixed to Low)
External serial flash r	memory co	ntrol							
FLASH_EN	-	-	5	ļ	H	Z	z	VDD	External serial flash read access enable
FLASH_SCKM	-	-	33	0	T1	Z	Z	VDD	External serial flash clock output
FLASH_NSCSM	-	-	28	0	T1	Z	Z	VDD	External serial flash slave selection output
FLASH_SIM	-	-	34	I	IH	Z	z	VDD	External serial flash data input
FLASH_SOM	-	-	32	0	T1	Z	z	VDD	External serial flash data output

(Continued on next page)

Pin name	рк д 1	PKG 2	ркд З	I/O	Function
Power supply					
VDD	5	5	7	Ρ	I/O cell power supply (Pins VDD and VSS should be connected as close to the device as possible with a bypass capacitor.)
VOUT	6	6	8	Ρ	Internal step-down regulator output (Pins VOUT and VSS should be connected as close to the device as possible with a 1 μ F bypass capacitor.)
VSS	4, 12, 14	4, 12	6, 29, 31	Ρ	I/O cell and internal area GND
Not used					
NC	-	-	4,9,10, 13 to 24, 37 to 48	NC	Leave open at all times.

5.2 Pin Description 2

Package types

PKG: QFP13-52 (external clock input) PKG5: QFP13-52 (oscillator connection)

Pin name (SPI/ I2C/ Standalone)	PKG 4	PKG 5	-	I/O	l/O cell type	State when SYSTEM_EN=L	State when CE=L	l/O power supply	Function		
Host interface											
SIS/ SDA/ SET_PLAY0	39	39	-	ю	BH1	Z	z	VDD	[SPI] Serial data input [I2C] Data input/output [Standalone] SET_PLAY0		
SCKS/ SCL/ SET_PLAY1	1	1	-	I	IH1	Z	Z	VDD	[SPI] Serial clock input [I2C] Serial clock input [Standalone] SET_PLAY1		
SOS/ -/ SET_PLAY2	2	2	-	Ю	BH1	Z	z	VDD	[SPI] Serial data output [I2C] Fixed to Low externally [Standalone] SET_PLAY2		
MSG_RECEIVE/ MSG_RECEIVE/ SET_PLAY3	3	3	-	Ю	BH1	Z	Z	VDD	[SPI] Serial data receipt ended [I2C] Serial data receipt ended [Standalone] SET_PLAY3		
SOUND_PLAYING	27	27	-	0	01	L	Z	VDD	Sound output interval output		
Audio output	Audio output										
SOUND_OUT_P	29	29	-	0	02	L	Z	VDD	Sound output (positive phase)		
SOUND_OUT_N	28	28	-	0	O2	L	Z	VDD	Sound output (negative phase)		

Pin name (SPI/ I2C/ Standalone)	PKG 4	PKG 5	-	I/O	I/O cell type	State when SYSTEM_EN=L	State when CE=L	l/O power supply	Function
System clock									
CLKI	32	-	-	I	IH	Z	Z	VDD	Clock input (refer to Section 6.2)
OSCI	-	33	-	I	LLIN	Z	z	-	Oscillator connector pin (refer to Section 6.2)
OSCO	-	34	-	0	LLOT	-	-	-	Oscillator connector pin (refer to Section 6.2)
System control		•	•	•					
CE	12	12	-	I	HLIN	Z	-	VDD	Internal stepdown regulator Operating (H)/Stopped (L)
SYSTEM_EN	13	13	-	I	IH	-	Z	VDD	System operation (H)/Stopped (L)
Test input/output		-	-		-				
TESTEN	38	38	-	I	ITST1	Pull-down	Pull-down	-	Test mode control pin (Normally fixed to Low)
TEST0	-	32	-	I	IH	Z	z	VDD	Test input pin (Normally fixed to Low)
TEST1	-	5	-	I	IH	Z	z	VDD	Test input pin (Normally fixed to Low)
External serial flash r	nemory co	ntrol		-					
FLASH_EN	5	-	-	I	IH	Z	z	VDD	External serial flash read access enable
FLASH_SCKM	36	-	-	0	T1	Z	Z	VDD	External serial flash clock output
FLASH_NSCSM	30	-	-	0	T1	Z	Z	VDD	External serial flash slave selection output
FLASH_SIM	37	-	-	Ι	IH	Z	Z	VDD	External serial flash data input
FLASH_SOM	35	-	-	0	T1	z	Z	VDD	External serial flash data output

(Continued on next page)

5. Pin Description

Pin name	РКG 4	РКG 5	-	I/O	Function
Power supply					
VDD 8, 33		8	-	Ρ	I/O cell power supply (Pins VDD and VSS should be connected as close to the device as possible with a bypass capacitor.)
VOUT	9	9	-	Ρ	Internal step-down regulator output (Pins VOUT and VSS should be connected as close to the device as possible with a 1 μ F bypass capacitor.)
VSS	7, 31, 34	7, 31 -		Ρ	I/O cell and internal area GND
Not used					
NC	4, 6, 10, 11 14 to 26, 40 to 52	4, 6, 10, 11 14 to 26, 30, 35 to 37 40 to 52	-	NC	Leave open at all times.

6. Function Description

6.1 Standard application system

The S1V30080 Series standard application system is configured as shown below. The S1V30080 is controlled by the host using commands (message protocol) issued via the serial interface. Pin settings also permit operations in standalone mode.

Serial interface mode

Standalone mode

6.2 System clock

The S1V30080 input clock frequency and internal system clock are determined by the settings shown below.

- Input clock division ratio
- Sampling frequency
- DAC bit width
- Input clock frequency (kHz)
 = Input clock division ratio x sampling frequency (kHz) x 2^{DAC bit width}
- Internal system clock (MCLK) frequency (kHz)
 = Sampling frequency (kHz) x 2^{DAC bit width}

Table 6.1 shows input clock and S1V30080 setting examples.

Input clock frequency (kHz)	Internal system clock (MCLK) frequency (kHz)	Input clock division ratio	Sampling frequency (kHz)	DAC bit width
4096	1024	4	4	8
8192	8192	1	8	10
16384	16384	1	16	10

Table 6.1	System clock mode settings
10010 0.1	

For more information on the respective setting procedures, refer to the *S1V30080 Series Message Protocol Specifications*.

You can set the clock source to be either direct input (input via the CLKI pin) or oscillator (connected to the OSCI/OSCO pin). The appropriate clock source selection varies from product to product. For more information, refer to "Table 3.1 S1V30080 Series product configurations."

6.3 Host interface

The S1V30080 host interface can be set to SPI, I2C, or Standalone mode 1/2.

The host interface selection is determined by the ROM data settings created using the *S1V30080* Series Sound Tool.

For more information, refer to the S1V30080 Series Sound Tool User Guide.

• I2C

Supports I2C slave mode.

Maximum transfer speed: Internal system clock (MCLK)/20 (when the I2C bus rise time is less than the internal system clock period)

• SPI

Supports slave mode.

Data length: Fixed to 8 bits, MSB first

Maximum transfer speed: Internal system clock (MCLK)/20 (when the SPI bus rise time is less than the internal system clock period)

• Standalone mode 1/2

Operations using 4-pin control

Interface	Host interface pin settings							
	SIS	SCKS	SOS	MSG_RECEIVE				
I2C (Note)	Data input/output	Serial clock input	(Fixed to Low externally)	Serial data receipt ended				
SPI (Note)	Data input	Serial clock input	Data output	Serial data receipt ended				
Standalone 1/2 ^(Note)	SET_PLAY[0]	SET_PLAY[1]	SET_PLAY[2]	SET_PLAY[3]				

Note For more information on respective interface control, refer to the S1V30080 Series Message Protocol Specifications.

7. Electrical Characteristics

7.1 Absolute maximum ratings

(VSS = 0V)

Item	Code	Rating	Unit
Power supply voltage	VDD	VSS - 0.3 to 7.0	V
Input voltage	VI	VSS - 0.3 to VDD + 0.5	V
Output voltage	VO	VSS - 0.3 to VDD + 0.5	V
Output current/pin	IOUT	±10	mA
Storage temperature	Tstg	-65 to +150	°C

7.2 Recommended operating conditions

				()	/SS = 0V)
ltem	Code	Min.	Тур.	Max.	Unit
Power supply voltage 1	VDD	2.2	-	5.5	V
Power supply voltage 2 ^(Note 1)	VDD	3.0	-	5.5	V
Input voltage	VI	VSS	-	VDD	V
Output voltage	VO	VSS	-	VDD	V
Ambient temperature	Та	-40	25	85	°C

Note 1 Power supply voltage for accessing external serial flash memory. Note the input/output voltage for serial flash memory when using external serial flash memory.

7.3 DC characteristics

7.3.1 DC characteristics with power supply voltage 5.0 V \pm 0.5 V

			(VDD = 5.0	0 V ± 0.5 V,	VSS = 0	V, Ta= -40°C	to 85°C)
	ltem	Code	Conditions	Min.	Тур.	Max.	Unit
	perating power supply rrent						
	Power supply current (Note 1)	IDD	VDD=5.0 V f _{MCLK} =16.384 MHz	-	4	-	mA
Re	sting current 1						
	Power supply current (Note 2)	IDDS1	VIN=VDD or VSS VDD=5.0V CE=VDD SYSTEM_EN=VSS	-	20	-	μA
Re	sting current 2						
	Power supply current (Note 2)	IDDS2	VIN=VDD or VSS VDD=5.0V CE=VSS	-	1	-	μΑ
Inp	out leakage current						
	Input leakage current		VDD=5.5V VIH=VDD VIL=VSS	-5	-	5	μA
ch	hmitt input aracteristics /CMOS)		VSET_PLAY0,SCKS/SCL/S ,FLASH_EN,FLASH_SIM	SET_PLAY1,S	SET_PLAY2	,SET_PLAY3,	
	H level input voltage	VIH2	-	2.0	-	4.0	V
	L level input voltage	VIL2	-	0.8	-	3.1	V
	Hysteresis voltage	ΔV	-	0.3	-	-	V
Οι	tput characteristics		G_RECEIVE,SOUND_PLA SM,FLASH_SOM	YING,FLASH	_SCKM,		
	H level output voltage	VOH1	VDD=4.5V IOH=-2mA	VDD-0.4	-	-	V
	L level output voltage	VOL1	VDD=4.5V IOL=2mA	-	-	VSS+0.4	V
ΟL	tput characteristics	Pins: SOUND	_OUT_P,SOUND_OUT_N				
	H level output voltage	VOH2	VDD=4.5V IOH=-4mA	VDD-0.4	-	-	V
	L level output voltage	VOL2	VDD=4.5V IOL=4mA	-	-	VSS+0.4	V
Οι	tput characteristics	MSG_RECEI	_PLAY0,SCKS/SCL/SET_F VE/ MSG_RECEIVE/SET_F SM,FLASH_SOM,SOUND_	PLAY3,FLASH	I_SCKM,		
	Off state leakage current	IOZ	-	-5	-	5	μA

Ρ	in capacitance	Pins: All input	pins						
	Input pin capacitance	СІ	f=1MHz VDD=0V	-	-	8	pF		
Ρ	in capacitance	Pins: All outpu	ut pins						
	Output pin capacitance	со	f=1MHz VDD=0V	-	-	8	pF		
Ρ	in capacitance	Pins: All input/output pins							
	Input/output pin capacitance	CIO	f=1MHz VDD=0V	-	-	8	pF		
Output pin permissible load capacitance Pins: FLASH_SCKM,FLASH_SOM,FLASH_NSCSM									
		CL	-	-	-	8	pF		

Note 1 Approximate current for decoding under recommended operating conditions (Ta = 25°C)

Current when internal system clock frequency f_{MCLK} = 16.384 MHz

For more information on the internal system clock frequency, refer to 6.2 System clock."

The recommended audio output section circuit is the circuit described in "10.3 Practical circuit example (Audio output section)."

Note 2 Resting current under recommended operating conditions (Ta = 25°C)

7.3.2 DC characteristics with power supply voltage 3.3 V \pm 0.3 V

		(\	/DD = 3.3 ± 0.	3V, VSS =	0V, Ta = -40°	C to 85°C
ltem	Code	Conditions	Min.	Тур.	Max.	Unit
Operating power supply current						
Power supply current (Note 1)	IDD	VDD=3.3V f _{MCLK} =16.384MHz	-	4	-	mA
Resting current 1						
Power supply current ^(Note 2)	IDDS1	VIN=VDD or VSS VDD=3.3V CE=VDD SYSTEM_EN=VSS	-	20	-	μA
Resting current 2						
Power supply current ^(Note 2)	IDDS2	VIN=VDD or VSS VDD=3.3V CE=VSS	-	1	-	μA
Input leakage current						
Input leakage current		VDD=3.6V VIH=VDD VIL=VSS	-5	-	5	μA
Schmitt input characteristics (LVCMOS)		A/SET_PLAY0,SCKS/SCL/S ,FLASH_EN,FLASH_SIM	SET_PLAY1,S	ET_PLAY2	,SET_PLAY3,	
H level input voltage	VIH2	-	1.2	-	2.52	V
L level input voltage	VIL2	-	0.75	-	1.98	V
Hysteresis voltage	ΔV	-	0.3	-	-	V
Output characteristics		G_RECEIVE,SOUND_PLA SM,FLASH_SOM	YING,FLASH	_SCKM,		
H level output voltage	VOH1	VDD=3.0V IOH=-1.4mA	VDD-0.4	-	-	V
L level output voltage	VOL1	VDD=3.0V IOL=1.4mA	-	-	VSS+0.4	V
Output characteristics	Pins: SOUND	_OUT_P,SOUND_OUT_N				
H level output voltage	VOH2	VDD=3.0V IOH=-2.8mA	VDD-0.4	-	-	V
L level output voltage	VOL2	VDD=3.0V IOL=2.8mA	-	-	VSS+0.4	V
Output characteristics	MSG_RECEI		PLAY3,FLASH	_SCKM,		
Off state leakage current	IOZ	-	-5	_	5	μA
Pin capacitance	Pins: All input	pins			·	
Input pin capacitance	CI	f=1MHz VDD=0V	-	-	8	pF

Pi	in capacitance	Pins: All outpu	ut pins						
	Output pin capacitance	со	f=1MHz VDD=0V	-	-	8	pF		
Pi	in capacitance	Pins: All input	Pins: All input/output pins						
	Input/output pin capacitance	CIO	f=1MHz VDD=0V	-	-	8	pF		
Output pin permissible load capacitance Pins: FLASH_SCKM,FLASH_SOM,FLASH_NSCSM									
		CL	-	-	-	8	pF		

Note 1 Approximate current for decoding under recommended operating conditions (Ta = 25°C)

Current when internal system clock frequency f_{MCLK} = 16.384 MHz

For more information on the internal system clock frequency, refer to "6.2 System clock."

The recommended audio output section circuit is the circuit described in "10.3 Practical circuit example (Audio output section)."

Note 2 Resting current under recommended operating conditions (Ta = 25°C)

7.3.3 DC characteristics with power supply voltage 2.4	V ± 0.2 V
--	-----------

(VDD = 2.4 ± 0.2V, VSS = 0V, Ta = -40°C to 85°C							
	ltem	Code	Conditions	Min.	Тур.	Max.	Unit
	perating power supply Irrent						
	Power supply current (Note 1)	IDD	VDD=2.4V f _{MCLK} =16.384MHz	-	4	-	mA
R	esting current 1						
	Power supply current ^(Note 2)	IDDS	VIN=VDD or VSS VDD=2.4V CE=VDD SYSTEM_EN=VSS	-	20	-	μA
R	esting current 2						
	Power supply current (Note 2)	IDDS2	VIN=VDD or VSS VDD=2.4V CE=VSS	-	1	-	μA
In	put leakage current						
	Input leakage current		VDD=2.6V VIH=VDD VIL=VSS	-5	-	5	μA
cł	chmitt input naracteristics VCMOS)		A/SET_PLAY0,SCKS/SCL/S ,FLASH_EN,FLASH_SIM	SET_PLAY1,S	ET_PLAY2	,SET_PLAY3,	
	H level input voltage	VIH2	-	0.88	-	1.82	V
	L level input voltage	VIL2	-	0.55	-	1.43	V
	Hysteresis voltage	ΔV	-	0.22	-	-	V
0	utput characteristics		G_RECEIVE,SOUND_PLA SM,FLASH_SOM	YING,FLASH <u></u>	_SCKM,		
	H level output voltage	VOH1	VDD=2.2V IOH=-1.0mA	VDD-0.4	-	-	V
	L level output voltage	VOL1	VDD=2.2V IOL=1.0mA	-	-	VSS+0.4	V
0	utput characteristics	Pins: SOUND	_OUT_P,SOUND_OUT_N				
	H level output voltage	VOH2	VDD=2.2V IOH=-2.0mA	VDD-0.4	-	-	V
	L level output voltage	VOL2	VDD=2.2V IOL=2.0mA	-	-	VSS+0.4	V
Output characteristics		MSG_RECEI		PLAY3,FLASH	_SCKM,		
	Off state leakage current	IOZ		-5	-	5	μA
Pi	n capacitance	Pins: All input	pins	ıI		I	
	Input pin capacitance	CI	f=1MHz VDD=0V	-	-	8	pF

Pi	in capacitance	Pins: All outpu	ut pins					
	Output pin capacitance	со	f=1MHz VDD=0V	-	-	8	pF	
Pi	in capacitance	Pins: All input	Pins: All input/output pins					
	Input/output pin capacitance	CIO	f=1MHz VDD=0V	-	-	8	pF	
Output pin permissible load capacitance Pins: FLASH_SCKM,FLASH_SOM,FLASH_NSCSM								
		CL	-	-	-	8	pF	

Note 1 Approximate current for decoding under recommended operating conditions (Ta = 25°C)

Current when internal system clock frequency f_{MCLK} = 16.384 MHz

For more information on the internal system clock frequency, refer to "6.2 System clock."

The recommended audio output section circuit is the circuit described in "10.3 Practical circuit example (Audio output section)."

Note 2 Resting current under recommended operating conditions (Ta = 25°C)

7.3.4 Operating power supply current and internal system clock frequency characteristics

The operating power supply current varies proportionally with the internal system clock frequency.

Figure 7.1 shows the operating power supply current against input clock frequency with an input clock division ratio of 1.

Figure 7.2 shows the operating power supply current against input clock division ratio with an input clock frequency of 16.384 MHz.

For additional information on input clock frequency, internal system clock frequency, and input clock division ratio, refer to "6.2 System clock."

Figure 7.1 Operating power supply current characteristics when f_{OSC} = f_{MCLK}

Figure 7.2 Operating power supply current characteristics when f_{OSC} = 16.384 MHz

Note Approximate current for decoding under recommended operating conditions (Ta = 25°C)

The recommended audio output section circuit is the circuit described in "10.3 Practical circuit example (Audio output section)."

7.4 AC characteristics

7.4.1 System clock timing

Figure 7.3 System clock timing

Symbol	Description	Min.	Тур.	Max.	Unit		
fosc	Input clock frequency	-	Note 1	16,384	kHz		
tosc	Input clock period	-	1/f _{osc}	-	ms		
f _{MCLK}	Internal system clock frequency	-	Note 2	16,384	kHz		
t _{MCLK}	Internal system clock period	-	1/f _{MCLK}	-	ms		
t _{pwh}	Input clock High level pulse width	0.45*T _{osc}	-	0.55*t _{osc}	ms		
t _{pw i}	Input clock Low level pulse width	0.45*T _{osc}	-	0.55*t _{osc}	ms		
tr	Input clock rising time (20% to 80%)	-	-	4	ns		
t _f	Input clock falling time (80% to 20%)	-	-	4	ns		
t _{CJper}	Input clock period jitter (Note 4, 6)	-400	-	400	ps		
t _{CJcycle}	Input clock cycle jitter (Note 3, 5, 6)	-400	-	400	ps		
Note 1	Input clock division ratio x sampling frequency (kHz) x 2	DAC bit width					
Note 2	Sampling frequency (kHz) x 2 ^{DAC bit width}						
Note 3	$t_{CJcycle} = t_{cycle1} - t_{cycle2}$						
Note 4	Input clock period jitter is the fluctuation from the centra	l period (inver	se of central	frequency).			
Note 5	Input clock cycle jitter is the period difference between adjacent cycles.						
Note 6	Jitter characteristics must satisfy both t _{Cjper} and t _{CJcycle} .						
Note	Great care must be taken to ensure that overshooting o	r undershootir	ng does not c	occur for the clo	ck.		

7.4.2 Power on/reset timing

Symbol	Description	Min.	Max.	Unit		
t ₁	Time from VDD rising to input signal rising ^(Note 1)	500		μs		
t ₂	Time from CE pin rising to CLKI/OSCI rising edge immediately before SYSTEM_EN = High	10	-	ms		
t ₃	Minimum reset width when switching on power	32	-	t _{OSC} ^(Note 2)		
t4	SYSTEM_EN internal synchronized time (Time taken to apply SYSTEM_EN = Low reset signal to internal circuits)	2	-	$t_{OSC}^{(Note 2)}$		
Note 1	Avoid applying signals to the input pin when VDD is not connected. Doing so may result in problems with chip reliability.					
Note 2	t _{OSC} is the CLKI/OSCI period.					

Note

Due to the effects of power supply noise, the internal circuit state cannot be guaranteed when resetting VDD from off to on. The circuit should always be initialized using SYSTEM_EN = Low after applying power supply.

7.4.3 Command receipt timing

Figure 7.5 Command receipt timing

The system starts after time t_1 has elapsed after a hardware reset. The ISC_***_REQ message flow can be used thereafter.

Symbol	Description	Min.	Max.	Unit	
t ₁	Time until messages can be received following initialization $_{\mbox{(Note 1)}}$	1.0	-	ms	
t2	Time until the next message can be received after receiving a message (Note 2, Note 3)	16,385	-	t _{MCLK} ^(Note 3)	
Note 1	No problems should arise if padding bytes are transmitted du	uring times t1 or	t ₂ .		
Note 2	Also refer to "7.4.8 MSG_RECEIVE output." t _{MCLK} is the internal system clock period.				
Note 3					

Figure 7.6 Standalone mode control timing

Symbol	Description	Min.	Max.	Unit
t ₁	Time until control is possible after SYSTEM_EN = High	1.0	-	ms
t2	Standalone mode control pin: SET_PLAY = Low section	50 ^(Note 1)	-	ms
t ₃	Standalone mode control pin: SET_PLAY = High section	50	-	ms
Note 1	In Standalone mode 1, the selected state must remain for at least 50	ms.		

7.4.5 Initialization timing from external serial flash memory

Figure 7.7 Initialization timing from external serial flash memory

Symbol	Description	Min.	Max.	Unit		
t ₁	Initialization start time after SYSTEM_EN = High	3.5	-	T _{OSC} ^(Note 1)		
t ₂	Initialization end time after SYSTEM_EN = High	1	-	ms		
Note 1	T _{OSC} is the CLKI/OSCI period.					
Note	SYSTEM_EN should be controlled based on the start time required for external serial flash memory.					

7.4.6 Serial host interface (SPI)

Symbol	Description	Min.	Max.	Unit		
t ₁	SCKS period	20	-	t _{MCLK} ^(Note)		
t ₂	SIS setup time	4	-	t _{MCLK} (Note)		
t ₃	SIS hold time	4	-	$t_{MCLK}^{(Note)}$		
t4	Time until SOS is enabled after SCKS falls	-	5	t _{MCLK} ^(Note)		
t ₅	SCKS clock High pulse width	10	-	t _{MCLK} ^(Note)		
t ₆	SCKS clock Low pulse width	10	-	t _{MCLK} ^(Note)		
Note	These values assume that the SPI bus rising and falling times do not exceed t_{MCLK} . Note that these values may increase if the SPI bus rising and falling times exceed t_{MCLK} due to load capacitance and pull-up resistance. t_{MCLK} is the internal system clock period.					

7.4.7 Serial host interface (I2C)

Symbol	Description	Min.	Max.	Unit	
t _c	SCL clock period	20	-	t _{MCLK}	
t _{ch}	SCL clock High pulse width	10	-	t _{MCLK}	
t _{cl}	SCL clock Low pulse width	10	-	t _{MCLK}	
t _{su}	SDA input setup time	4	-	t _{MCLK}	
t _h	SDA input hold time	4	-	t _{MCLK}	
t _d	SDA output delay time	-	6	t _{MCLK}	
t _{ss}	START condition start time	4	-	t _{MCLK}	
t _{se}	START condition end time	4	-	t _{MCLK}	
t _{ps}	STOP condition start time	4	-	t _{MCLK}	
t _{pe}	STOP condition end time	4	-	t _{MCLK}	
Note	These values assume that the I2C bus rising and falling times do not exceed t_{MCLK} . Note that these values may increase if the I2C bus rising and falling times exceed t_{MCLK} due to load capacitance and pull-up resistance. t_{MCLK} is the internal system clock period.				

Symbol	Description	Min.	Max.	Unit			
t _{ML}	Time until MSG_RECEIVE rising after serial communication has ended $_{(Note \ 1)}$	16,383	16,385	t _{MCLK} (Note 3)			
t _{MH}	MSG_RECEIVE High section time (Note 2)	0	16,385	t _{MCLK} ^(Note 3)			
Note 1	MSG_RECEIVE indicates that the S1V30080 has received a message. It is not output if a message is not received correctly. The following messages can be transmitted before MSG_RECEIVE is output, but MSG_RECEIVE is output only for the previous message. Thus, the time may in certain cases deviate from these specifications. MSG_RECEIVE for ISC_SYNTHESIZER_MELODY_START_REQ indicates that ISC_SYNTHESIZER_MELODY_START_REQ can be transmitted and deviates from these specifications. Similarly, in the case of MSG_RECEIVE for ISC_STATUS_REQ, the MSG_RECEIVE rising time after ISC_STATUS_RESP is output complies with these specifications. Also refer to the S1V30080 Series Message Protocol Specifications.						
Note 2	MSG_RECEIVE will be Low if the next message is received while MSG_RECEIVE is being output.						
Note 3	t _{MCLK} is the internal system clock period.						
7.4.9 SOUND_PLAYING output

Figure 7.11 SOUND_PLAYING output timing

Symbol	Description	Min.	Max.	Unit		
t _{ON}	Time from SOUND_PLAYING rising to sound output start (Note 1)	49	51	ms		
t _{OFF}	Time from sound output end to SOUND_PLAYING falling 0 4,096 t _{MC}					
Note 1	When using SOUND_PLAYING for external amplifier mute control, adjust the amplifier so that the amplifier starts approximately 50 ms after the SOUND_PLAYING rising.					
Note 2	t _{MCLK} is the internal system clock period.					

7.4.10 External serial flash memory access timing

Figure 7.12 External clock synchronized serial flash memory interface timing

Symbol	Description	Min.	Max.	Unit	
t ₁	Time from FLASH_NSCSM falling to FLASH_SCKM rising	30	-	ns	
t ₂	FLASH_SCKM period	1	-	t _{MCLK} ^(Note 1)	
t ₃	Time from effective FLASH_SCKM rising to FLASH_NSCSM rising	30	-	ns	
t4	FLASH_SIM setup time	20	-	ns	
t ₅	FLASH_SIM hold time	10	-	ns	
t ₆	Time from FLASH_SCKM falling until FLASH_SOM is enabled - 10				
Note	These specifications are for output loads of 8 pF for FLASH_NSCSM, FLASH_SCKM, and FLASH_SOM.				
Note 1	t _{MCLK} is the internal system clock period.				

7.4.11 Power supply disconnection timing

Figure 7.13	Power supply disconnection timing	r
		"

Symbol	Description	Min.	Max.	Unit
t1	Time from input pin = Low until power supply is disconnected	500	-	μs
Note	Avoid applying signals to input pins, including the SYSTEM_EN and CE pins, when VDD is not connected. Doing so may result in problems with chip reliability.			

7.4.12 Sleep mode start timing using CE pin

Figure 7.14	Power supply disconnection timing
-------------	-----------------------------------

Symbol	Description	Min.	Тур.	Max.	Unit
t ₁	Time from CE pin = Low until switch to Sleep mode	-	1.0	2.0	μs
Note	These specifications assume that resistor R0 is inserted betwee "8.5 Sleep mode control using CE pin."	en VOUT a	nd VSS in a	accordance	• with

8. External Connection Examples

8.1 System clock

The S1V30080 Series system clock allows selection of either direct input (input via the CLKI pin) or oscillator (connected to the OSCI/OSCO pin) as the clock source. External connection examples are shown below for the various clock feed configurations.

8.1.1 Direct input

Figure 8.1 shows an external connection example with the clock signal input to the CLKI pin as the clock source.

Figure 8.1 System clock external connection example (CLKI pin)

8.1.2 Oscillator

Figure 8.2 System clock external connection example (oscillator)

An oscillator and oscillator circuit are connected to the OSCI and OSCO pins, as shown in Figure 8.2.

Table 8.1 lists external circuit constant examples. The oscillation characteristics will vary, depending on specific conditions (such as components and circuit board pattern used). The values shown in Table 8.1 are examples only and do not necessarily assure proper operations.

Ceramic oscillators in particular are extremely sensitive to external component and circuit board effects. Before using a ceramic oscillator, always contact the manufacturer to confirm usage conditions.

Product code	Frequency (Hz)	Oscillator	Cg[pF]	Cd[pF]	Rf[Ω]	Rd[Ω]
S1V30080M01	1.024 M	Murata CSBFB1M02J58-R1	220	220	1 M	0
S1V30080M01	2.028 M	Murata CSTCC2M04G56-R0	(47)	(47)	1 M	0
S1V30080M01	4.096 M	Murata CSTCR4M09G55-R0	(39)	(39)	1 M	0
S1V30080M01	8.192 M	Murata CSTCE8M19G55-R0	(33)	(33)	1 M	0
S1V30080M01	16.384 M	Murata CSTCR16M3V53-R0	(15)	(15)	1 M	0
S1V30080F11	1.024 M	Murata CSBFB1M02J58-R1	220	220	1 M	680
S1V30080F11	2.028 M	Murata CSTCC2M04G56-R0	(47)	(47)	1 M	470
S1V30080F11	4.096 M	Murata CSTCR4M09G55-R0	(39)	(39)	1 M	0
S1V30080F11	8.192 M	Murata CSTCE8M19G55-R0	(33)	(33)	1 M	0
S1V30080F11	16.384 M	Murata CSTCR16M3V53-R0	(15)	(15)	1 M	0
S1V30080M01	4.09 M	TDK CCR4.09MUC8	(27)	(27)	1 M	0
S1V30080M01	8.00 M	TDK CCR8.0MXC8	(18)	(18)	1 M	0
S1V30080M01	16.000 M	TDK CCR16.0MXC7	(10)	(10)	1 M	0
S1V30080F11	4.09 M	TDK CCR4.09MUC8	(27)	(27)	1 M	0
S1V30080F11	8.00 M	TDK CCR8.0MXC8	(18)	(18)	1 M	0
S1V30080F11	16.000 M	TDK CCR16.0MXC7	(10)	(10)	1 M	0
S1V30080M01	4.000 M	Epson Toyocom MA-406	33	33	1 M	1500
S1V30080M01	12.000 M	Epson Toyocom FA-238V	7	7	1 M	100
S1V30080M01	16.384 M	Epson Toyocom FA-238	4	4	1 M	100

Table 8.1 Oscillator external circuit constant examples

Note Values in parentheses indicate the capacitance of the osicllator.

8.2 Serial host interface

8.2.1 SPI

Figure 8.3 Serial host interface external connection example (SPI)

MSG_RECEIVE is an output signal indicating that the S1V30080 is ready to receive the next command. Using this signal as an interrupt signal to the host helps reduce the load associated with message transmission. For more information on MSG_RECEIVE output timing, refer to the *S1V30080 Series Message Protocol Specifications* and "7.4.8 MSG_RECEIVE output" in this manual.

SOUND_PLAYING is an output signal indicating the time duration of sound output. This signal can be used to indicate the start and end of sound output. For more information on SOUND_PLAYING output timing, refer to the *S1V30080 Series Message Protocol Specifications* and "7.4.9 SOUND_PLAYING output" in this manual.

8.2.2 I2C

Figure 8.4 Serial host interface external connection example (I2C)

MSG_RECEIVE is an output signal indicating that the S1V30080 is ready to receive the next command. Using this signal as an interrupt signal to the host helps reduce the load associated with message transmission. For more information on MSG_RECEIVE output timing, refer to the *S1V30080 Series Message Protocol Specifications* and "7.4.8 MSG_RECEIVE output" in this manual.

SOUND_PLAYING is an output signal indicating the time duration of sound output. This signal can be used to indicate the start and end of sound output. For more information on SOUND_PLAYING output timing, refer to the *S1V30080 Series Message Protocol Specifications* and "7.4.9 SOUND_PLAYING output" in this manual.

8.3 Standalone connection

Figure 8.5 Standalone connection example

The S1V30080 can be controlled simply by switching SET_PLAY0 to SET_PLAY3 or using the host CPU. For more information on control methods, refer to the *S1V30080 Series Message Protocol Specifications*. For more information on SET_PLAY0 to SET_PLAY3 timing, refer to "7.4.4 Standalone mode control timing" in this manual.

8.4 External serial flash memory interface

The S1V30080 includes pins as a package option for accessing external serial flash memory (S1V30080F00**00 and S1V30080F10**00 only). Connecting external serial flash memory containing sound data and setting the FLASH_EN pin to High level allows operations virtually identical to those with internal ROM (10-bit DAC bit width only).

For more information, refer to the *S1V30080 Series Message Protocol Specifications*. For more information on serial flash memory access timing, refer to "7.4.10 External serial flash memory access timing" in this manual.

8.5 Sleep mode control using CE pin

The S1V30080 allows the current consumed to be reduced when not operating (Sleep mode) by setting the CE pin to Low and setting all other input pins to VDD or VSS. We recommend stopping the clock as well.

When using the CE pin to achieve a low current state, insert R0 between VOUT and VSS, as shown in the diagram below. Inserting R0 reduces the time taken to switch to Sleep mode after setting the CE pin to Low. For more information on the timing from setting CE pin to Low until switching to Sleep mode with R0 inserted, refer to "7.4.12 Sleep mode start timing using CE pin."

The control timing for the SYSTEM_EN and CE pins when switching the CE pin from Low to High is described in "7.4.2 Power on/reset timing."

Figure 8.7 Sleep mode using CE pin

Note The output pin here will be Hi-Z output.

9. Package Information

9.1 SSOP2-16

Cumbal	Dimens	sion in Mil	limeters
Symbol	Mîn	Nom	Max
D	-	6.8	
E	-	4.4	-
D1	1977	6.6	
Amax	8 	=	1.7
Aı	477	0.05	
A2	2 	1.5	
E	-	0.8	8
b	0.26	-	0.46
С	0.1		0.25
θ	0°	<u>ш</u>	10°
	0.2	<u> </u>	0.6
Lı	8	0.9	-
Hε	74	6.2	-
У	1	-	0.1

1 = 1mm

9.2 QFP12-48

1 = 1mm

9.3 QFP13-52

10. Reference Material

10.1 Practical circuit example (SSOP2-16)

Figure 10.1 illustrates a practical circuit example for the S1V30080 (SSOP2-16).

Figure 10.1 S1V30080 Series (SSOP2-16) practical circuit example

- (*1) The connection configuration for the system clock input section will differ based on the clock frequency and clock source used. Refer to the specific information given in "8.1 System clock."
- (*2) The connection configuration for the interface section will differ based on the interface type used. Refer to the specific information given in "8.2 Serial host interface" and "8.3 Standalone connection."
- (*3) For audio output section circuit examples, refer to "10.3 Practical circuit example (Audio output section)."
- (*4) The bypass capacitor between VDD and VSS will vary, depending on the system, but should normally be around several μ F to several tens of μ F.

10.2 Practical circuit example (QFP12-48/13-52)

Figure 10.2 illustrates a practical circuit example for the S1V30080 Series.

Figure 10.2 S1V30080 Series (QFP12-48/13-52) practical circuit example

- (*1) The system clock will be directly input for the QFP12-48, and either directly or through oscillator connection for the QFP13-52. Refer to the specific information given in "8.1 System clock."
- (*2) The connection configuration for the interface section will differ based on the interface type used. Refer to the specific information given in "8.2 Serial host interface" and "8.3 Standalone connection."
- (*3) For audio output section circuit examples, refer to "10.3 Practical circuit example (Audio output section)."
- (*4) For more information on the external serial flash memory interface, refer to "8.4 External serial flash memory interface." If no external serial flash memory interface is used, set the FLASH_EN pin to Low and the FLASH_SCKM, FLASH_SIM, FLASH_SOM, and FLASH_NSCSM pins to Open. Note that only the S1V30080F00**00 and S1V30080F10**00 allow external serial flash memory to be connected, and external serial flash memory cannot be connected to the S1V30080F11**00 (QFP13-52, oscillator connected).
- (*5) The bypass capacitor between VDD and VSS will vary according to the system, but should normally be around several μ F to several tens of μ F.

10.3 Practical circuit example (Audio output section)

Figure 10.3 illustrates a practical circuit example for the audio output section.

The SOUND_OUT_P/SOUND_OUT_N pins should be connected to AMP with as short a connection as possible.

The GND side of the secondary LPF capacitor (6.8 nF) should be connected to VSS with as short a connection as possible.

The speaker amplifier peripheral circuit and constants shown in Figure 10.3 are examples only and do not necessarily assure proper operations or characteristics.

The LPF cutoff frequency in this example is 4 kHz.

10.4 Mute start/cancel timing

The figure shown below illustrates a mute control timing example in each state for minimizing noise at power on/off and at standby when controlling the speaker amplifier mute function using general purpose input/output ports.

Figure 10.4 Mute start/cancel timing

Symbol	Description	Min.	Max.	Unit
t ₁	Time from SYSTEM_EN = High to mute cancel	150	-	ms

Note The timing chart above is for when mute is enabled with the MUTE pin at Low level.

10.5 Precautions concerning power supply

Circuits should always be initialized using SYSTEM_EN after turning on power, since the state of the internal circuit cannot be guaranteed due to the effects of power supply noise when returning VDD from off to on.

CMOS-structured devices may enter what is called the "Latch-up" state. This involves current flowing through PNPN junctions (thyristor structures) inside the CMOS IC, resulting in large current flows between VDD and VSS and eventual damage.

Latch-ups occur when the voltage applied to the input and output pins exceeds the rating and a large current flows through the internal components, or when the VDD pin voltage exceeds the rating and internal components break down. The following points must be observed, since once a latch-up occurs, even if the voltage applied exceeds the rating only momentarily, a large current will be maintained between VDD and VSS, resulting in a risk of overheating or smoke generation.

- (1) Do not raise voltage levels to the input and output pins beyond the range specified in the specifications for electrical characteristics or allow such levels to fall below VSS.
- (2) Make sure the device is protected from exposure to excessive noise.
- (3) Fix the electrical potential of unused input pins to VDD or VSS.
- (4) Avoid short-circuiting the output.

10.6 Clock direct input precautions

Noise will be input to the power supply if the overshoot or undershoot in the clock is excessive when using an external direct clock input. The noise is dispersed from the power supply through the internal regulator to the internal regulator output, causing the internal regulator output to fluctuate and possibly resulting in internal circuit damage or malfunction.

Clock overshoot and undershoot must be kept within the input voltage range indicated in Section "7.1 Absolute maximum ratings." If overshoot or undershoot is present, this should be addressed using a damping resistance or low pass filter.

The same prevention measures are required for external signals other than the clock external input, but particular caution is necessary for the clock due to the high frequency.

10.7 Mounting precautions

Observe the following precautions when designing the circuit board and mounting the IC.

10.7.1 Oscillator circuit

The oscillation characteristics will vary, depending on factors such as components used (oscillator, Rf, Rd, Cg, Cd) and circuit board patterns. In particular, when using ceramic or crystal oscillators, select appropriate values of external resistors (Rf, Rd) and capacitors (Cg, Cd) by fully evaluating components when actually mounted on the circuit board.

Oscillator clock disturbances due to noise may cause malfunctions. Consider the following issues.

- Components such as oscillators, resistors, and capacitors connected to the OSCI and OSCO pins should have as short a connection as possible.
- Wherever possible, digital signal lines should not be located within 3 mm of the OSCI and OSCO pins or related circuit components and wiring. In particular, signals with rapid switching should be kept away from these components. Since the spacing between layers of multi-layer printed circuit boards is a mere 0.1 mm to 0.2 mm, the above also applies when locating digital signal lines in other layers. Never place digital signal lines in parallel with these components or wiring. This warning applies even if positioned more than 3 mm away or in separate layers. Avoid crossing wires.
- The OSCI and OSCO pins and related wiring should be shielded using VSS, including for adjacent circuit board layers. The wiring layer should be broadly shielded, as shown in Figure 10.5. Adjacent layers should be fully grounded where possible; as a minimum, shield adjacent layers to cover the area of at least 5 mm around the above pins and wiring. Note that digital signal lines cannot be configured in parallel as mentioned above, even if these precautions are implemented. Crossing should be avoided even in separate layers except for signals with low switching frequencies.

Figure 10.6 Oscillator circuit VSS pattern example

10.7.2 Reset circuit

The reset signal input to the SYSTEM_EN pin when power is turned on will vary, depending on various factors such as power supply rising time, components used, and circuit board patterns. Constants such as capacitance and resistance should be determined by testing thoroughly with practical products. You must account for resistance fluctuations when setting the SYSTEM_EN pin pull-up resistance since high impedance may cause malfunctions due to noise.

10.7.3 Power supply

Sudden power supply fluctuations due to noise will cause malfunctions. Always consider the following issues.

- Connections from the power supply to the VDD and VSS pins should be made using patterns as short and thick as possible.
- Pins VDD and VSS should be connected as close to the device as possible with a bypass capacitor. The bypass capacitor will vary, depending on the system, but should normally be around several μF to several tens of μF .
- Pins VOUT and VSS should be connected as close to the device as possible with a 1 μF bypass capacitor.

Figure 10.7 Bypass capacitor connection example

10.7.4 Signal line location

Large-current signal lines should not be located close to circuits susceptible to noise, such as the oscillation section. Observing this precaution will help to prevent electromagnetic noise arising from mutual induction.

Locating signal lines in parallel over significant distances or crossing signal lines operating at high speed will cause malfunctions, due to the noise generated by mutual interference. In particular, avoid locating signal lines operating at high speed close to circuits susceptible to noise, such as the oscillation section.

10.7.5 Malfunction due to noise

Check the following points if you suspect IC malfunctions due to noise.

• SYSTEM EN pin

Low-level noise to this pin will reset the IC. However, the reset may not execute properly, depending on the input waveform. This is more likely to occur if the impedance is high when the reset input is High due to factors related to circuit design.

SCKS pin

This pin is the synchronized clock input pin for the clock synchronized serial interface. Exposing this pin to noise may cause waveforms to be identified as valid data, resulting in malfunctions. Make the serial interface (SCKS, SIS, SOS) connections as short as possible.

• FLASH_SCKM pin

This pin is the synchronized clock output pin for the clock synchronized serial interface. Noise accompanying signals output from this pin may be mistakenly identified as valid data by the external serial flash memory, resulting in malfunctions.

Large load capacitance in output from this pin will increase delays at the external serial flash memory interface, exceeding specifications for FLASH_SIM setup time. (Refer to "7.4.10 External serial flash memory access timing.")

The external serial flash memory interface (FLASH_SCKM, FLASH_SIM, FLASH_SOM, FLASH_NSCSM) connections should be made as short as possible.

• Power supply

The IC will malfunction the instant noise deviating from the specified voltage is input. Countermeasures should be provided on the circuit board, such as solid patterns for circuit board power supply circuits and adding noise-filtering decoupling capacitors and surge/noise prevention components to the power supply line.

10.7.6 Miscellaneous

The S1V30080 Series is manufactured using a 0.15 μ m microscopic process. It is designed to ensure basic IC reliability meeting EIAJ and MIL standards, but care must be taken with respect to the following points when mounting the product.

The OSCI and OSCO pins directly use internal 0.15 μ m transistors. In addition to potential physical damage during mounting, products may also be electrically damaged by disturbances in the form of voltages exceeding the absolute maximum rating (2.5 V) due to gradual variations over time. These include the following:

- Electromagnetic noise generated by industrial power supplies used in mounting reflow, reworking after mounting, and individual characteristic evaluation (testing) processes
- Electromagnetic noise from a solder iron when soldering

In particular, during soldering, the soldering iron GND (tip potential) should be at the same potential as the IC GND.

10.8 Product code scheme

Revision History

	Revision details				
Date	Rev. No.	Page	Category	Details	
03/02/2009	1.0	All	New	Newly established	
08/28/2009	2.0	2	Addition Change	External serial flash memory access (Change) QFP12-48-pin product only → S1V30080F00**00 and S1V30080F10**00 Package (Addition) QFP-52pin	
		3	Addition	S1V30080F10**00 and S1V30080F11**00 added Ability and inability to connect external serial flash memory added.	
		4	Change	Errors in Figure 4.1 corrected	
		5	Change	Errors in Figure 4.2 corrected	
		6	Change	Errors in Figure 4.3 corrected	
		7	Addition	4.4 QFP13-52 (external clock input)	
		8	Addition	4.5 QFP13-52 (oscillator connection)	
		9	Change	Pin description \rightarrow 5.1 Pin description 1 (changed following addition of QFP13-52)	
		10	Change	Errors corrected FLASH_SCKM: I→O, FLASH_SOM: I→O	
		11-13	Addition	5.2 Pin description 2 (added following addition of QFP13-52)	
		35	Change	t1:Min="-", Max=500µs → Min=500µs, Max="-"	
		37	Change	Figure 8.1: S1V30080M/F00**00 → S1V30080M00**00/S1V30080F00**00/S1V30080F10**00 (changed following addition of QFP13-52)	
		38	Change	Figure 8.2: S1V30080M01**00 → S1V30080M01**00/S1V30080F11**00 (changed following addition of QFP13-52)	
		39	Addition	S1V30080F11 added, and TDK oscillator and Epson Toyocom crystal oscillator added.	
		43	Change	QFP12-48 → S1V30080F00**00 and S1V30080F10**00	
		47	Addition	9.3 QFP13-52	
		49	Change	 10.2 Practical circuit example (QFP12-48) → 10.2 Practical circuit example (QFP12-48/13-52) Figure 10.2: S1V30080 (QFP12-48) → S1V30080 (QFP12-48/QFP13-52) Diagram number: Figure 10.2 S1V30080 Series (QFP12-48/13-52) practical circuit example (*1) System clock input will be direct input for QFP12-48. → The system clock will be directly input for the QFP12-48, and either directly or through oscillator connection for the QFP13-52. 	
		49	Addition	(*4) Note that only the S1V30080F00**00 and S1V30080F10**00 allow external serial flash memory to be connected, and external serial flash memory cannot be connected to the S1V30080F11**00 (QFP13-52, oscillator connected).	
		50	Change	The SOUND_OUT_P/SOUND_OUT_N pins should be connected to the secondary LPF (5.6 k Ω , 6.8 nF) with as short a connection as possible. \rightarrow The SOUND_OUT_P/SOUND_OUT_N pins should be connected to AMP with as short a connection as possible.	
		57	Addition	Type: F1:QFP13-52	

EPSON

AMERICA

EPSON ELECTRONICS AMERICA, INC.

2580 Orchard Parkway, San Jose, CA 95131, USA Phone: +1-800-228-3964 FAX: +1-408-922-0238

EUROPE

EPSON EUROPE ELECTRONICS GmbH

Riesstrasse 15, 80992 Munich, GERMANY Phone: +49-89-14005-0 FAX: +49-89-14005-110 **International Sales Operations**

ASIA

 EPSON (CHINA) CO., LTD.

 7F, Jinbao Bldg., No.89 Jinbao St.,

 Dongcheng District,

 Beijing 100005, CHINA

 Phone: +86-10-6410-6655

 FAX: +86-10-6410-7320

SHANGHAI BRANCH

7F, Block B, Hi-Tech Bldg., 900 Yishan Road, Shanghai 200233, CHINA Phone: +86-21-5423-5522 FAX: +86-21-5423-5512

SHENZHEN BRANCH

12F, Dawning Mansion, Keji South 12th Road, Hi-Tech Park, Shenzhen 518057, CHINA Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

EPSON HONG KONG LTD.

20/F, Harbour Centre, 25 Harbour Road, Wanchai, Hong Kong Phone: +852-2585-4600 FAX: +852-2827-4346 Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110, TAIWAN Phone: +886-2-8786-6688 FAX: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

SEIKO EPSON CORP.

KOREA OFFICE 50F, KLI 63 Bldg., 60 Yoido-dong, Youngdeungpo-Ku, Seoul 150-763, KOREA Phone: +82-2-784-6027 FAX: +82-2-767-3677

SEIKO EPSON CORP. SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept. IC International Sales Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-42-587-5814 FAX: +81-42-587-5117